
AFIT/GCE/ENG/93M-01

AD-A262 614

Design of a Hardware Discrete Event Simulation Coprocessor

THESIS

Reprodu~ed FromDavid W. DanielDTIC
Rpoue FroCatai,.VUSAF DTIC 'Bestepdud FoAvailable Copy CatiUA• E L ECT E ib

AFIT/GCE/ENG/93M.01 APR 0 5 1993

E U

Approved for public release; distibution unlimited

93-0699698 4 0.2 145 inmI|IIinua

AFIT/GCE/ENG/93M-01

Design of a Hardware Discrete Event Simulation Coprocessor

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of SciencE in Computer Engineering Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification.............................

David W. Daniel, B.S. BybDisti ibution I

Captain, USAF Availability Codes

Avail and I or
Dist Special

March, 1993

Approved for public release; diutibution unlimited

Acknmowledgmenta

I would like to thank my advisor, Dr. (Lt Col) William Hobart, for providing the philoso-

phy/direction that was much needed during this effort. I would also like to thank Major

Mark Mehalic for his patience and invaluable assistance wLile ,emporarily standing in for

Lt Col Hobart.

The support of some key students should also be mentioned. Capt Heinrich Rieping

was very supportive during the thesis home-stretch. His support and encouragement are

very much appreciated and were indispensible during this effort. I would also like to thank

Capt Van Horn for his assistance in helping me better understand the SPECTRUM filters

and in gathering test data for many simulations.

I would like to thank, and commend my new son, Brandon, for just recognizing me

during his first ten months. I would just like to say that I am ready to be a father now.

Most of all I must thank my wife, Cathy. Her patience, strength, love, and under-

standing were instrumental in our success at AFIT. Without all of these traits, AFIT could

of actually been much worse. I would just like to say thanks for being there for me when

I wasn't there for you. Cathy, I NEED you and I LOVE you.

David W. Daniel

*1i

Table of Contents

Page

List of Figures. x

List of Tables x

Abstract. xi

I. Introduction

1.1 Background. 1

1.2 Problem. 2

1.3 Summary of Current Knowledge 3

1.3.1 Discrete Event Simulation (DES). 3

1.3.2 Continuous Simulation. 3

1.3.3 Combined Discrete- Continuous Simulation. 4

1.4 Constraints. 4

1.5 Scope. 5

1.6 Standards 5

1.7 Approach/Methodology 6

1.8 Thesis Outline 6

11. Simulation Acceleration Issues. 8

2.1 Introduction 8

2.2 Simulation Acceleration Techniques 8

2.2.1 Simulation Types 8

2.2.2 Simulation Constraints. 9

2.2.3 Simulation Approach. 10

2.3 Summary 16

Page

III. Approach/Methodology 18

3.1 Introduction 18

3.2 Structural Decomposition 18

3.2.1 Host-Node Interfacing. 18

3.2.2 LP-Specific Information Storage. 20

3.2.3 Next-Event List Management. 21

3.2.4 Architectural Control. 21

3.3 SPECTRUM Testbed. 22

3.3.1 Functions. 22

3.3.2 Routine design 23

3.4 Test Approach 23

3.5 Summary 23

IV. Detailed Coprocessor Design 25

4.1 Introduction 25

4.2 Component Design Approach 25

4.2.1 Design Tools. 25

4.3 Host-Node Interfacing. 27

4.3.1 Data Interfacing Component 27

4.3.2 Handshaking Port Device 28

4.3.3 Interrupt Handling Component 29

4.3.4 Opcode/Operand Register 30

4.3.5 Select Generation Device 30

4.4 LP-Specific Information Storage Device. 31

4.4.1 Random Access Memory (RAM) Device 31

4.5 Next-Event List Management Device 32

4.5.1 Content Addressable Memory (CAM) Device 32

4.6 Architectural Control Device 37

IV-

I_ _

Page

4.6.1 DES Clock Design 38

4.6.2 Mapping Random Access Memory (MRAM) Unit ... 38

4.6.3 Microinstruction Multiplexer (MMUX) Component.. 40

4.6.4 Microinstruction Program Counter Component 40

4.6.5 Incrementer Component 1

4.6.6 Control Store Des;gn.............. 41

4.6.7 Microinstruction Register 45

4.6.8 DES Opcode Decoder 45

4.6.9 R1/R2 Mux Components 46

4.6.10 Ri and R2 Decoder Components 47

4.6.11 "AND" Latch Component 47

4.6.12 General/Special-Purpose Register Bank 47

4.6.13 PATH "A" Latch Unit 49

4.6.14 PATH "B" Latch Unit 49

4.6.15 Memory Buffer Register (MBR) Component 49

4.6.16 Memory Address Register Component 51

4.6.17 Path "A" Multiplexer Component 51

4.6.18 Arithmetic Logic Unit 51

4.6.19 Zero Logic Latch 52

4.6.20 Shifter Component 52

4.6.21 Micro-Sequence Logic Component 52

4.7 Summary 53

V. Detailed Microcode Design 55

5.1 Introduction 55

5.2 DES Microcode 55

5.2.1 Startup Simulation Routine 55

5.2.2 Fetch/Decode Routine 56

v

Page

5.2.3 Initialize Simulation 57

5.2.4 Post Message. 57

5.2.5 Get Event. 57

5.2.6 Post Event 57

5.2.7 Opcode Format. 57

5.2.8 Operand Format 58

5.3 Microcode Routine Execution Examples 58

5.4 Summary 63

VI. DES Coprocessor Design Test. 64

6.1 Introduction 64

6.2 Design Test Methodology 64

6.3 DES Test Bench Design. 65

6.4 DES Test Data. 67

6.5 DES Coprocessor Design Testing. 67

6.5.1 'Control Store and MRAM Load 67

6.5.2 Interrupt Routine Testing 68

6.5.3 Error Routine Testing. 69

6.5.4 Event Execution Testing. 69

6.6 Summary 79

VII. Results and Recommendations. 81

7.1 Introduction 81

7.2 Calculation Process.... 81

7.2.1 Hypercube Filter Averages. 81

7.2.2 DES Filter Averages 83

7.2.3 System Overhead Calculation. 83

7.2.4 Overall Speedup. 85

vi,

Page

7.3 Recommendations 86

7.3.1 CAM Modifications......................... 86

7.3.2 Microcode................................ 86

7.3.3 Behavioral Components. 87

7.3.4 Timing Analysis 87

7.3.5 Paradigm Support. 87

7.3.6 Hardware Implementation 87

7.4 Summary 88

Appendix A. DES SPECTRUM Algorithmas. 89

A.1 Read-Only' Control Store Procedure. 89

A.2 Fetch/Decode Procedure. 89

A.3 Initialize Simulation Procedures 90

A.4 Post Message Proredures. 91

A.5 Get Event Procedures. 92

A.6 Post Event Procedures.. 93

Appendix B. DES Microcode Routines 94

B.1 Read-Only Microcode

B.2 Fetch/Decode Microcode. 97

B.3 Initialize Simulation Microcode 99

BA4 Poet Message Microcode 110

B.5 Get Event Microcode. 117

B.6 Poet Event Microcode... 126

Appendix C. DES Microcode Instruction Set. 130

Appendix D. DES VHDL Behavioral and Structural Code 134

References. 135

Vii

Page
Vita. 137

vwl

List of Figures

Figure Page

1. Inter-node Communication Path 16

2. Desired Inter-node Communication Path 17

3. DES Component Mapping 19

4. Status Word Configuration 28

5. Event List Management D vice 33

6. Discrete Event Simulation Coprocessor 39

7. Control Store Block Diagram 42

8. General/Special-Purpose Register Configuration 48

9. Initialize Simulation for LP 5 60

10. The first Post Message for LP 560

11. The Fourth Post Message for LP 5 61

12. The First Get Event for LP 5 62

13. The First Get Event for LP 5 62

14. Carwash Configuration 74

15. Hypercube Simulation Data 82

16. Hypercube Total Times 84

ix

istd Of T4b1es

Table Page

1. RAM Partition Layout................................... 31

2. CAM Control Map 33

3. CAM Word Definition 34

4. Input to Output mapping. 40

5. GPR Register Original Contents. 5

6. ALU Operation. 51

7. SHIFTER Operation. 52

8. MSL Input to Output Mapping. 54

9. Load Vector Format. 56

10. Opcode Formats 58

11. Initialize Simulation Operands 59

12. Test Bench Algorithm 6.. 66

13. Speedup Procedures. 82

14. Cube Filter Tir-es. 83

15. DES Microcode Routine Test Data Processing TimeE 83

16. System Overhead. 85

17. Coprocessor Speedup Ratios 85

18. Overall Speedup using Spin Loops. 86

x

AFIT/GCE/ENG/93M-01

Abstract

A hardware discrete event simulation (DES) coprocessor was designed to eliminate

synchronization overhead as a possible bottleneck. The target architecture is an eight

node Intel tPSC/2 Hypercube, but this design has application to future CPU designs

that wish to incorporate on-chip architectural features to better support parallel processor

synchronization. A strdctural description of a general-purpose DES hardware coprocessor

is given with approximately 90 percent of the components written at the gate level. The

remaining components use low-level behavioral descriptions. While the DES coprocetsor

microcode implements the Chandy-Misra protocol, general-purpose support for a wide-

range of protocols was a primary hardware design objective.

xi

Design of a Hardware Discrete Event Simulation Coproceesor

L. Introduction

1.1 Background

Computer simulations are used in a broad range of diverse applications such as

engineering, medicine, social sciences, and the military. This thesis effort is primarily con-

cerned with its usage in the military environment. Simulations were traditionally designed

for and executed on sequential processors. However, significant increases in the size and

complexity of simulations over the past 20 years have resulted in simulation models "whose

computational requirements cannot be reasonably satisfied with even the fastest sequential

processors 117:8]."

The Air Force has a large investment in electronic hardware. As the size and com-

plexity of these hardware components grow, so do the development costs. The Department

of Defense (ZDoD) started the Very High Speed Integrated Circuit (VHSIC) program to en-

courage the development and use of high-density integrated circuits in military systems.

VHSIC technology is heavily dependent on the simulation of these large, complex circuits

to verify the circuit design prior to chip fabrication. Validation of circuit functionality and

fault tolerance testing is essential to chip verification. This complex testing, performed

through simulation, can consume months of computer time and has become a bottleneck

In the logic design process [6:449].

In 1983, the VHSIC Hardware Description Language (VHDL) program was started

to support standard tools require to design, test, and document large-scale circuits more

efficiently and effectively. In 1987, many improvements to the VHDL language led to

the IEEE Standard VHDL Language Reference Manual. VHDL has become the industry

standard for simulation of large-scale circuits and also performs the important task of

documentation of the circuits. Due to wide-scale acceptance of VHDL, the Department of

Defense Advanced Research Agency (DARPA) sponsored the QUEST project. The main

objective of the QUEST project is a thousand-fold speedup for VHDL EimulationE.

In addition to the VHDL simulations required for VHSIC chip verification, a thor-

ough timing analysis should be performed and fed back into the VHDL simulation to

provide increased accuracy. Speedup of a VHDL simulation is not complete without real-

istic timing information to prove circuit performance. A transistor-level circuit simulator

should be used to perform the timing analysis for accurate simulation models. If the cir-

cuit simulation meets the measured timing constraints, then the circuit is more likely to

perfcrm as expected.

1.2 Problem

The limitations of traditional sequential processors have led to increased interest in

the area of parallel computer architectures as well as hardware simulation accelerators to

increase simulation performance. The use cf parallel systems has several obstacles inherent

to paralle processing that must be minimized to approach maximum speedup. Among the

obstacles to simulation acceleration are: the communications overhead associated with

the necessary exchange of event messages between logical processes, the load imbalance of

logical processes to processors, and the synchrcnization delay necessary to ensure event-

driven simulations do not process events out of time-stamp order. The communication

tasks on parallel architectures require significant simulation time and often contribute

to processor idle time while the source processor waits for an acknowledgement from the

destination processor. To free up the processor for event processing, a hardware coproý_essor

can be utilized to off-load some communication overhead. [21:6-2] ,

This thesis effort will use the results of the requirements analysis performed by Taylor

and confront many of the remaining issues on how to implement a hardware accelerator

using the conservative Chandy-Misra paradigm on a parallel multiple instruction, multiple

datapath (MIMD) system [21]. The primary objective of this thesis effort is to perform a

proof of concept for hardware simulation accelerators. Basically, this thesis effort shows

that the synchronization overhead, associated with the passing of messages between nodes

2

/

and event management, can be off-loaded to a hardware accelerator f rom each of the Intel

Hypercubel iPSC/2 80386 node processors, providing significant simulation speed-up.

1.3 Summar of Current Knowledge

Simulation models are classified by Pritsker as either discrete, continuous, or com-

bined. The basis for this classification is how the dependent variables of the simulation

model change with respect to time. Discrete simulation is further classified by the rela-

tionship between events, activities, and processes [16:63-64].

1.3.1 Discrete Event Simulation (DES) A discrete event simulation model occurs;

when the dependent variables change only at specified points in simulated time, referred

to as event times. A DES model can be formulated by:

1. Event Orientation. Event orientation defines the changes in state that occur at

event times, determines the events that can change the state of the system, and then

develops the logic associated with each event type.

2. Activity Scanning Orientation. Activity scanning orientation describes entity activ-

ities in the system. The events which start or end the activity are nct scheduled

by the modeler, but are initiated from the conditions specified for the activity. This

type of DES could be considered condition-driven.

3. Process Orientation. Process orientation describes entity flow within the system and

is more directly related to standardized statements within a simulation language.

The language statements are used to determine whether conditions or events have

occurred, thereby signaling the need for system updating.

The objects within the discrete system are called entities. The state of the system can

change only at an event time [16:63-64].

1.3.2 Continuous Simulation A continuous simulation occurs when the dependent

variables can change over the entire simulation time. The dependent variables are called

'Hypercube is a registered trademark of the Intel Corporation.

.3

state variables. Models of continuous systems are frequently written in terms of derivatives.

Time is divided up into small time slices called steps. Continuous simulation languages for

digital computers normally employ a block or statement orientation. A block orientation

emulates a circuit component of an analog computer and a statement orientation models

differential or difference equations [16:63-641.

1.3.3 Combined Discrete- Continuous Simulation A combined discrete-continuous

simulation occurs when some dependent variables can change only at discrete times and

others can change over the entire simulation time. There are two types of events that can

occur in combined simulation: time-events and state-events. Time-events are those events

which are scheduled to occur at specified times and state-events are those events that are

not scheduled, but occur when the system reaches a particular state [16:63-64].

This thesis effort will focus on the area of discrete event simulation. The CAR-

WASH simulation model developed by Lee will be used as a base-line for all performance

measurements [12]. Along with characterizing the CARWASH simulation, Taylor devel-

oped a VHDL behavioral description of a hardware simulation accelerator, demonstrating

the feasibility of improving simulation performance by oft-loading the communication and

synchronization overhead [21:6-2].

1.4 Constraints

This thesis effort focuses on the simulation acceleration of all discrete event simu-

lation models; therefore, the simulation acceleration of a specific application cannot be

guaranteed. A special-purpose hardware accelerator might be required for an application

specific model to guarantee maximum performance gains.

All of the simulation test results gathered for this effort were compiled on the Intel

iPSC/2 hypercube. The test data provides a base line to perform speedup calculations, but

without realistic event processing, the simulation test Idata could appear biased. Therefore,

speedup is quoted in terms of SPECTRUM filter speedup leading to an overall system

performance gain. The amount of system performance increases can be easily changed by

the length of the spin loops used to emulate the event processing time. Overall speedup

4

is application-dependent when using the DES coprocessor. Larger event processing time

leads to decreased speed up.

All of the VHDL simulations were conducted on the AFIT VLSI network of Sun

Sparc stations2 . Each of the systems had 64 Mbytes of system memory and a variable

size swap space. This constraint caused the bize of the DES Content-Addressable Memory

(CAM) to be down-sized to 128 words. The original target size was 1024 32-bit words.

This limitation led to smaller simulation runs and less accurate results.

1.5 Scope

The goal of this thesis effort was to perform a proof of concept for off-loading synchro-

nization ovzrhead to a hardware simulation coprocessor. This research focuses on modeling

the hardware coprocessor at the gate level; therefore, a VHDL structural description was

constructed for each component of the coprocessor.

The proof of concept was documented by a VHDL structural description. The circuit

design was validated through VHDL simulations, and speedup was computed when using

the DES coprocessor.

1.6 Standards

The evaluation of simulation speedup is sometimes ambiguous or biased to infer the

desired speedup goals are met. Logic simulation performance is ra.:ed using a different

measurement criteria throughout the research. Common measurements of logic simulation

performance include gate evaluations per second, instructions per second, and events per

second. Simulations rated using gate evaluations per second are usually slower than those

rated using events per second. Stating rates in gate evaluations per second overstates

the performance since the gate evaluation rate includes the inactive gates that require no

processing time [8:43]. This thesis effort compares the execution times of the discrete event

simulation with and without the DES coprocessor to quantify the" speedup obtained.

2Sparc is a registered trademark for Sun microsystems.

5

1.7 Approach/Methodology

The requirements analysis and VHDL behavioral description by Taylor provided a

basis for the direction of this thesis effort [211. The first step of this research was to perform

a ccmplete structural decomposition of the VHDL behavioral description of the hardware

simulation coprocessor. The primary objective of the decomposition was to determine the

feasibility of using commercial off-the-shelf (COTS) products and the possibility of using

MAGIC, a chip fabrication editor, to layout some of the components.

Once the decomposition was complete, the development of a gate-level structural

description using VHDL was necessary for a proof of concept. The structural description

uses realistic signal propagation delays for each gate within the circuit. The propagation

delays are built into the Synopsys design compiler library written by Brothers [2]. These

delays were extracted from HSPICE, a timing analysis tool, runs on the respective CMOS

gates. The library only provides a "NAND", "NOR", "INVERTER", and a D Flip-Flop.

All of the required components can be constructed from this basic set of gates. Stringent

simulation testing was conducted to ensure DES functionality would support general pur-

pose simulations. A VHDL test bench was constructed to provide a high-level model of a

Hypercube node.

Once the structural descriptiop was complete, each of the five SPECTRUM func-

tions was written at the microcode level. The five functions implemented are initialize

simulation, get event, post event (incoming message), post message (outgoing message),

and advance simulation time. For this hardware coprocessor, the advance time function is

built into the Get Event routine.

1.8 Thesis Outline

Chapter H is a synopsis cf information gathered to support this research effort.

Chapter mI outlines the methodology used to attack this research effort and to accomplish

the objectives stated in the problem statement. Chapter IV is a detailed discussion of the

hardware design including the use of standard components and implementation-specific

components interfaced together to obtain the functionality needed. A detailed description

6

of the microcode written to effectively use the DES coprocessor and implement the Chandy-
Misra protocol filters is included in Chapter V. Chapter VI outlines the coprocessor test
plan and the results obtained from the testing process. Chapter VII provides the thesis
results and the recommendations for future actions in this area.

7

HI. Simulation Acceleration Issues

2.1 Introduction

This chapter supplies much of the background information that was used to make

decisions during the design phase. Simulation acceleration techniques are discussed in

detail to provide some basic knowledge needed to understand some of the unique problems

that might be encountered. Different types of simulations are discussed to provide more

information required to fully support all of the functions within a given simulation type.

Some of the simulation constraints are discussed to ensure an unrealistic design is not

attempted. In any given simulation, software and hardware acceleration might be possible.

This chapter also discusses some of the software approaches to simulation acceleration.

2.2 Simulation Acceleration Techniques

Simulation speedup is necessary to make the simulation of complex models practical.

Model and implementation speedup are two methods of measuring simulation speedup.

Model speedup is measured by the ratio of sequential to parallel time when the best

implementation is used on both systems. This is the only speedup metric which truly

reflects speedup. Implementation speedup is measured by the ratio of sequential to parallel

wall-clock time when there is only one implementation of the model. [23:1-71

To ensure speedup is stated correctly, only model speedup is considered. Stating

implementation speedup could invalidate the other legitimate results of the research.

2.2.1 Simulation Types Simulation models are categorized as either discrete, con-

* tinuous, or combined. State changes within the discrete simulation model can be further

divided into time-driven and event-driven. The dynamic behavior of a physical system is

examined by tracing various system activities as a function of time. Computer simulation

models can change state only along specific time boundaries.

Time-driven simulation is considered a synchronous method. In this interval-oriented

approach, time is advanced from time t to t + At in uniform fixed increments of At.

Processing of messages occurs only at the discrete time boundaries. The second method,

event-driven simulation, is asynchronous and time advances along event boundaries. Using

this approach, time is "incremented from time t to the next event time e', whatever the

value of t' [14:136]."

The start of the VIISIC program shifted the focus of simulation speedup in the raili-

tary to logic simulation. The event-driven method is well-suited to digital logic simulation

where only a small portion of the circuit, typically 10-15 percent, is active at a given

time [5:67]. In the time-driven method, every time interval must be checked for candidate

events. These facts reinforce the selection of the event-driven approach.

W.'thin the area of event-driven simulation there are three major event sequencing

approaches. Any of these three approaches can be used for a practical implementation.

1. Event scheduling - ihis approach views the system as a whole; a complete description

of everything that occurs is given when an event takes place, and subsequent events

are scheduled by specifying their time of occurrence.

2. Process interaction - this approach is concerned with the steps taken during the

processing of an event and the interaction between the actions.

3. Activity scanning - this approach does not require an event list. An activity is

defined as the state of an entity over an interval and an activity is bounded by any

two successive events. This approach is more attractive than the event accheduling

approach, which requires an up-to-date future events list. [14:154-155]

2.2.2 Simulation Co n'r'aints When striving for enough speedup to make a qual-

itative difference, some constralnts limit the performance of the simulation. The basic

approach to increase logic simulation speed is to write the code in assembly language.

This approach usually results in less than a three-fold speedup. The next approach relies

on a faster microprocessor resulting in another three-fold speedup. Combining these two

approaches could result in a six- to nine-fold speedup. [3:130]

The new systems which combine the previously mentioned approaches are rated

// by gate evaluation speeds and event speeds. A gate evaluation represents a change in the

input, while an event represents a change in the output. One event relates to approximately

9

\ :\ ,i

2.5 evaluations. Accelerators that are rated in evaluations per second are generally much

slower than those rated in events per second. When a rate is stated, the logic level of

evaluation should be considered. A compiled-code s'mulator will appear to run faster

than an event-driven simulator because the compiled-code simulator evaluates every gate

at every clock pulse. A comparison can be meaningful between these two systems only

when the activity level of the circuit is considered. Compiled-code simulators usually don't

provide a timing analysis. [8:43-44]

Process synchronization is a necessary limitation that cannot be completely over-

come. The realizability condition places the constraint of requiring processes at time t

to be affected by only messages at or before time t. This requirement synchronizes the

processes to ensure accurate results are obtained [13:45].

Another constraint on speedup is the problem of deadlock which occurs when using

the Chandy-Misra approach to computer simulation. Deadlock occurs when all processing

stops because every processor is waiting for an event that will never take place. If this

problem is not resolved, the simulation cannot complete. Chandy-Misra uses null messages

to eliminate this problem [4:57]. A null message is a message sent to update the time on a

given input arc to possibly enable the downstream process to progress. Deadlock detection

and recovery can also be used to overcome a deadlock state. Probes can be used to detect

deadlock. Probes are messages sent to child nodes requesting status information [4:202].

Both approaches will work, but not without performance degradation.

2.2.3 Simulation Approach Specialized hardware and general-purpose hardware are

the two prevalent approaches to hardware acceleration. Within each of these areas, proper

partitioning and limiting inter-processor communications are essential to fully utilize the

simulation accelerator. However, applying logical partitioning with a specialized h,.rdware

accelerator requires significant trade-offs. A general-purpose hardware approach can be

designed to fully utilize a wider variety of logical partitioning methods as well as software

acceleration techniques to obtain speedup over a larger range of applications.

10

2... Hardware Utilization A general-purpose hardware approach to simu-

lation acceleration must meet many constraints to be acceptable. Two of the most impor-

tant constraints to meet are simulation accuracy and flexibility. Accuracy of a simulation

refers to the level of exactness obtained when comparing the physical model and the log-

ical process. The flexibility of a simulation refers to its ability to support a variety of

approaches.

D'Abreu believes that the response of the simulator, in terms of predicted signal

values versus time, must correspond very closely with the response of the actual circuit

[5:63]. An easy way to increase the accuracy of a model involves the use of multi-valued

logic. rhis research effort used multi-valued logic seven (MVL'd). Using various types of

timilig delays for all of the primitives is another way to increase a model's accuiacy. This

point becomes very clear during the analysis of a large circuit. If realistic timing delays

are not used, then incorrect results could be obtained. [5:63-65]

A special-purpose hardware simulator can provide optimum speedup for a specific

application. Therefore, the requirement for flexibility must be heavily weighted to make

the general-purpose approach advantageous. The rollback chip proposed by Fujimoto is a

good example of using a special-purpose hardware chip to increase the performrance of a

specific application [7:81]..

2.2.3.2 Distribu ted Protocols Within the area of simulation mechanisms, there

are two prevalent approaches to computer simulation. First, the Time Warp Operating

System (TWOS) is considered an optimistic approach because it continues processing all

incoming messages relying on rollback for process synchronization rather than waiting for

all input arcs to have an event present. The second approach, the Chandy-Misra protocol

is considered a conservative method since processing continues only when all input arcs

have received a time-stamped message.

The Time Warp mechanism is based on the Virtual Time paradigm. Virtual Time is

defined by Jefferson as a method of organizing distributed systems by imposing on them a

temporal coordinate system more computationally meaningful than real time [10:404]. In

this paradigm, processing continues until a message comes in with a time stamp (virtual

receive time) earlier ian any message already processed and sti~ng in the output queue.

When a message is received out-of-order, a rollback of time must occur back to the time

just before that of the incoming message. To accomplish this all side effects of the messages

already processed are rolled back so that the system will appears as if the messages have

not yet been processed [10:405-406].

The TWOS is designed to support large-scale, irregular discrete event simulations.

The TWOS runs a single simulation at a time on as many processors as are available. There

are no static restrictions on the programmer. The TWOS is an event-driven mechanism

that uses message passing to communicate. The messages, at a minimum, are composed

of the sender, virtual send time, receiver, and virtual receive time. AJI messages contain a

sign field which is used to identify it from its antimessage. The original message retains a

positive character in the sign field and the antimessage retains a negative sign. Messages

within this paradigm do not have to arrive in time-stamp order. Message processing

continues until the input queue is empty. There it; only one input queue for all incoming

messages and one outgoing queue for all outgoing messages. Time Warp applies primarily

to event-driven simulations. There are three basic mechanisms controlling the operation

of this paradigm.

1. Local Control Mechanism - this mechanism controls all local processing. It executes

those processes that are the oldest with respect to the current time.

2. Roll Back Mechanism - whenever a message is received with a virtual recaive time

in the past, the roll back mechanism starts performing the following steps: restore

the last saved state before time t (new receive time), discard saved future states, and

start executing messages at time t.

3. Global Control Mechanism - the global virtual time (GVT) is used to determine sys-

tem progress and performs many system functions. The main concerns of the global

control mechanism are: memory management, flow control, normal termination de-

tection, error handling, 1/O, snapshots, and recovery.

12

7

The GVT is responsible for removing all saved states that are earlier in time than the

GVT. There must always be one saved state older than GVT to enable a process to roll

back to a correct state. [10:410-419]

The actions necescary to roll back a process are achieved through the use of antimes-

sages. For every message there is an antimessage that is exactly like the original message

except for its sign. Whenever a message is sent to a receiver's input queue, an antimessage

is placed in the sender's output queue. Antimessages make it possible to eliminate all side

effects of a message before the simulation is adversely affected.

Whenever a message and its antimessage appe.&r in the same queue they annihiiate

each other. A negative message will cause a rollback to occur at the destination if the

original message has already been processed. If the original message is still present in the

receiver's input queue, annihilation occurs without causing a rollback of the process. These

simple rules are essential to the robust antimessage protocol. The cost of this approach is

simply the cost of the rollback and antixuessage overhead [10:414,416].

The Chandy-Misra algorithm maps physical processes (PP) to a distributel network

of logical processes (LP) communicating via time-stamped messages. This approach re-

quires an entry on every input arc for all communicating processes. This requirement

ensures that events arriving in time-stamp order are processed in order. Any entities that

interact at discrete intervals of time can be simulated by a network of processes communi-

cating via messages. Predictability must be met by every physical system. This conditicn

requires that for every cycle at time t there is a PP in the cycle and a real number c, c > 0,

such that the messages sent by PP along the cycle can be determined up to t + e time in

the future. There is a logical process corresponding to every PP. [13:.5-46]

The requirement for a message on all input arcs produces a problem of simulation

deadlock that must be addressed. Chandy-Misra uses the concept of null messages to avoid

the deadlock problem. A process sends a message of the form (t, null) to denote the lack

of a real message for the receiving process during a given time interval. A null message

is also sent to all output arcs whenever a null message is received and processed by a LP.

Measurements show that a large fraction of the messages sent are null messages[4:201-202].

13

The overhead associated with nuU messages can be eliminated by using a deadlock detec-

tion and recovery algorithm. However, this approach has not been proven to outperform

deadlock resolution via null messages.

The deadlock detection and recovery simply consists of allowing a simulation to

continuously deadlock and then recover. A special process called the controller is used to

detect deadlock. The controller is then tasked to initiate a computation forcing the LUs

to advance their local clocks. Although the controller is a central process, since it does not

carry out any computations, it is not expected to be a bottleneck. [4:202]

2.2.3.3 Hardware Coprocessor Implementa*,ion This sectiou outlines the func-

tions and architectural factors that will be considered during tihis research effort. The

areas of concern are: parallel discrete event simulation (PDES), the direct connect module

(DCM), and Taylor's implementation [21].

The PDES framework is a discrete event simulation method that uses global reduc-

tions on state information to expedite the dissemination of critical information. PDESs

consist of processes that communicate using time-stamped messages. A local clock is used

to generate the respective timestampb of the messages in the system. Reynolds mentions

the use of an auxiliary pa.-llel reduction network (PRN) that can disseminate required

global information many orders of magnitude faster than it can be disseminated in typical

distributed memory multicomputers [15:167]. The following assumptions should be con-

sidered to ensure that the worst case scenario does not cause simulation failure. These

assumptions are:

1. An LP can communicate with any other LP.

2. Events can be processed in zero-time.

3. Events can be preemptive.

4. Events can be spawned and consumed.

The ability to handle an event from any other LP has often been touted as a majoi

'vantage of PDES protocols that employ aggressive processing strategies [10].

14

The three global values used by PDES's to enhance parallel simulation are minimum

next event time, smallest unreceived message, aud sum. The minimum next event time,

Tq, is the next event to be executed on LP,. The smallest unreceived message, T'.,

is simply the timestamp of the longest outstanding message from LP, without a receive

acknowledgement. The sum, T,, is the number of messages sent minus the number of

messages received. [15:168-169]

The synchronization algorithm used to support the PDES has forr functions: test,

sendmsg, rcvmsg, and rcvack. The test function monitors the relation between its next

event time, T,, and T'. Whenever they arse equal the LPj can process its next event. The

sendmsg function maintains a sequence of unacknowledged message pairs for its host LP.

The rcvmsg function adjusts the receiving LP's T. and sends an acknowledgement back

to the sending LP. The rcvmsg function also decrements ?',,. The rcvauk function removes

message pairs from the sending LP's outstanding message sequence and adjusts T,. The

key feature to this algorithm is its ability to identify the smallest next event time even

when there are outstanding messages. [15:169-170]

The proposed framework provides efficient support for deadlock-free parallel sim-

ulation. This protocol, operating alone, applied to a typical PDES, would not support

concurrency among LPs. This algorithm becomes most useful when the LP that can pro-

cess safely needs to be determined since it promotes the use of an aggressive protocol

running on top of the framework. [15:171-172]

All inter-node communication on the Intel sPSC/2 Hypercube must be sent through

the DCMs. If the DES could communicate directly with a DCM, more of the communica-

tions and synchronization overhead could be eliminated, resulting in additional speedup.

However, since information regarding the DCM is proprietary, work in this area was not

possible. Instead, CPU interrupts are required to transfer information between nodes.

Figure 1 shows the system configuration for inter-node communication with the proposed

placement of the DES.

Figure 2 shows the ideal placement of the DES, connected in parallel with the DCM

and the host node. This configuration would enable the DES coprocessor to receive and

15

Figure 1. Inter-node Communication Path

transmit messages directly to other nodes without having to interrupt the CPU. e.ther

computer architectures could have similar limitations on their inter-node communicat ions.

These constraints could limit speedup experienced when using a DES accelerator.

2.3 Summaury

In this chapter, various approaches to simulation and the means of speeding up ex-

ecution of these simulations are discussed. Time-driven and event-driven simulations are

the two prominent approaches to simulation advancement. Simulation time is advanced

either on discrete time boundaries or on event boundaries. The Chandy-Misra and Time

Warp protocols were also discussed in order to lay out different methods of implementing

simulations to ensure true operation is reflected. One of the simulation time advancement

schemes must be incorporated into a given protocol to properly model a physical sys-

tem. This research effort implements an event-driven simulation using the Chandy-Aisra

paradigm.

This research effort focuses on the design and the simulation of a general-purpose

hardware accelerator which can be used to speedup simulations using a wide range of

protocols. Other research efforts are focused on simulation acceleration through software

16

A

'II

7 ~Figure 2. Desired Inter-~node Communication Path

means, such as ifiter modifications and more effective partitioning algorithms. Many of

the acceleration mechanisms can be used in combination with each other to achieve a

multiplicative effect.

71

1117

/ 4 - -I

III. Approach/Methodology1

3.1 Introduction

This chapter is an overAew of the approach used to design the DES coprocessor.

A structural decomposition of Taylor's code was conducted to determine and logically

group the functions into components [21]. Once the decomposition was completed, the

components were constructed and interfaced together to form the design. The software

procedures were developed to take full advantage of the hardware design.

The software procedures are in the form of the SPECTRUM testbed filters imple-

mented to support the Chandy-Misra protocol with null messages. Taylor's behavioral code

which implemented the SPECTRUM filters was decomposed to supply the steps needed

to fully support the conservative protocol [21].

Once the implementation of the design in VHDL was completed, testing procedures

were developed to adequatelyý test the design. This chapter also includes a high-level

approach to the tests used in this research effort.

3.2 Structural Decomposition

The first step in the design process was to structurally decompose Taylor's behavioral

VHDL code. This process resulted in a logical grouping of functions into four areas:

host-node interfacing, LP-specific information storage, next-event list management, and

architectural control. Figure 3 provides an overall diagram of the DES components and

the system interfaces required for simulation execution. A detailed description of the

components used to implement each of the four functional areas is included in Chapter IV.

3.2.1 Host-Node Interfacing Since the Intel Hypercube node uses a standard 80386

CPU for event processing, standard 80386 signal definitions were followed during the de-

sign of the DES coprocessor. There are five logical components that evolved from this

requirement and they are: data interfacing, handshaking port, interrupt handling, op-

code/operand determination, and select generation.

18
18

N <.• 7

ucv

73

Fiur V. DE opoetMapn
../.

19

3.2.1.1 Data Interfacing The DES and host system both have 32-bit buses.

A parallel I/O interface was determined to be the best approach to transferring data since

it allows bi-directional flow of data and can be controlled using the standard set of 80386

signals available on the Intel Hypercube.

3.21.2 Handshaking Port Another device used in direct support of the data

interfacing device was a handshaking system. This system has to provide state information

to the DES and the host system concerning the interface status. A 4-bit status register

was chosen to support this requirement because the only four status parameters of concern

are: ready status, error status, data ready for the DES from the host, and data ready for

the host from the DES.

9.2.1.3 Interrupt Handling In order to force the host system to process DES

events, an interrupt process had to be developed. Since 80386 CPU uses the lowest order

eight bits of the system data bus to represent an interrupt vector, an 8-bit register to pass

the vector to the system data bus was implemented.

3.2.1.4 Opcode/Operand Determination In order for the DES to distinguish

between an opcode and an operand, a device had to be developed to check system address

bit two which identifies the transaction type. A 1-bit register is used to hold the transaction

type, opcode or operand, for DES processing purposes.

3.2.1.5 Select Generation The final requirement to properly implement the

interface between the DES and the host system was the development of a component to

provide chip selects for all of the interface devices. A simple combinational logic circuit is

designed to use standard 80386 signals, the system data bus, and the system address bus

to generate the appropriate chip selectR.

3..L2 LP-Specific Information Storage The next functional area of concern was

the storage of the LP-specific information for each LP. This information is required for

every filter called within the Chandy-Misra protocol. Since there are a maximum of 20

LPs per node, 20 partitions were constructed to hold the LP delay (LP.DELAY), current

20

0~ - -. ,

simulation time (SIM-.TIME), number of input and output arcs (#.../O...RCS), and the

input and output arc encoded identification.

Static RAM, Dynamic R.AM (DRAM), and DES registers were all considered for

supporting this requirement. The only advantage to using DRAM is the reduction in the

chip area used per cell. Because only a relatively small memory module is required, chip

area was not the primary concern. Disadvantages of the DRAM are the memory refreshing

circuitry and slower access times which eliminated the DRAM from consideration. Using

DES registers to store the LP-specific information has many advantages. The main dis-

-~ advantage, which eliminates the register approach from contention, is the chip area that

would be consumed on the DES chip. An objective generated during the overall design

a~pproach was to provide maximum speedup by fabricating the DES on a single large-

frame chip. Meeting this objective and placing all of these registers on-chip is not feasible;

therefore, this approach was also eliminated. The final choice was the use of SRAM to -

maintain the LP-specific information. The SRAM is small enough and fast enough to

-~ ... meet the requirements of this function. Therefore, the SRLAM was selected to support this

requirement.

3.2.9 Next-Event List Management The next function to be considered was the

retrieval of the next event for processing. This function is required every time a Get Event

opcode is received and an event is ready. Only SRLAM and a CAM were considered. The

CAM was chosen ')ecause it could perform a search of its memory in 0(1) time. A RAM

N. ~could have been used but the search time would be at best O(log n).

9.2.4 Architectural Control In order to utilize the architecture, some control facility

had to be developed. A detailed description of the subcomponents used to provide the

control for the architecture and the method for supporting a wide range of protocols are

discussed in Chapter IV.

21

3.3 SPECTRUM Testbed

During Taylor's requirements analysis, the primary •' .ns found to provide sim-

ulation acceleration was in reducing the synchronization overhead involved with event

formatting, transmitting, receiving, and event-list management. S'.ce SPECTRUM is the

communications interface in use at AFIT for parallel simulation on the Intel iPSC/2 Hy-

percube, it was the primary target to off-load to a hardware accelerator, thereby freeing

up the system for event processing. A detailed description of the implementation of the

SPECTRUM filters is included in Chapter V.

SPECTRUM is the interface between the user's application program and the system-

level functions. This interface enables the user to write generic simulations without concern

to the architecture of the machine it will reside on. General purpose filters are used to

allow the user to make system calls. Five functions are provided through the SPECTRUM

filters to enable parallel simulation in a well-organized manner using the Chandy-Misra

paradigm.

These functions enable the system to communicate messages (events) between LPs on

the same nodes or on different nodes. Standard filters such as Post Event and Post Message

are used for this type of communication between LPs. Standard filters are also useful when

porting simulation programs across systems by reducing the conversion process. This

provides a more general-purpose environment.

3.3.1 Functions During the decomposition of Taylor's behavioral code, the steps

required for each of the five SPECTRUM filters were extracted. All of these SPECTRUM

functions are supported by the DES hardware accelerator. Thte code is stored in the

control store of the DES coprocessor and is loaded by the bootstrap ROM. This loading

process is discussed in Chapter IV. The Get Event routine has been modified slightly to

update the simulation time whenever a Get Event opcode is issued /by the host node. The

Advance Time function is no longer a separate function; therefore, only four functions

remain to be implemented. In addition to these five functions, the Bootstrap ROM and

Fetch/Decode microroutines were written to support loading of microcode and opcode

22

processing, respectively. The algorithms followed for each of the seven routines is located

in Appendix A.

3.3.2 Routine design Some sort of phased approach to microcode execution had to

be developed to standardize microinstruction processing. The microcode process for the

DES is based on three phases: fetch, decode, and execute. Each of the four SPECTRUM

functions has a unique opcode that points to a microroutine that controls the DES archi-

tecture. The entire microcode design is implemented with a vertical encoding to reduce the

number of control bits required to perform an instruction. The microinstructions control

all internal DES components through the use of an opcode decoder.

3.4 Test Approach

The DES test process was implemented in the following four areas: control store and

mapping RAM loading, interrupt generation, error generation, and simulation execution.

A high-level VHDL description of a 80386 CPU was implemented to enable testing in each

of the areas listed. The test were also checked to ensure events occurred in a deterministic

fashion. The test process and results from testing are described in more detail in Chapter

VI.

3.5 Summary

First, all of the background information was gathered to provide a detailed under-

standing of the subject area. Next, the Chandy-Misra protocol was researched to properly

implement the simulation algorithm chosen for use with the CARWASH simulation. Im-

proper implementation of the algorithm could lead to false speedup results. Once the

background information was gathered, a structural decomposition of Taylor's coprocessor

was conducted to note all design decisions made during his research effort [21]. This step

provided the information necessary to lay out the path to hardware accelerator completion.

The path chosen, started with the design of a behavioral description of the detailed

system components. After these individual designs were thoroughly tested, generation of

the VHDL structural descriptions began. After testing all of the structural components,

23

,..

• \ //

the micrcoroutines implementing the Chandy-Misra protocol were developed and event

processing began.

/'

24

IV. Detailed Coprocessor Design

4.1 Introduction

The goal of this design was to generate an efficient and effective structural description

of the Discrete Event Simulation (DES) hardware accelerator with accurate timing results

to prove that a hardware accierator can provide substantial speedup.

With the design goals in place, the detailed design of the DES coprocessor is described

in this chapter. This design focuses on decreasing the synchronization overhead at the node

level rather than the system level. This chapter discusses the implementation of standard

hardware components as well as some of the implementation-specific devices designed to

meet the requirements of the Chandy-Misra protocol. The components developed as a

result of the structural decomposition outlined in Chapter III are described in detail in the

following subsections.

4.9 Component Design Approach

VHDL design tools were heavily used during this research. The automation process

used to create a MAGIC lay out from a behavioral descripticn is included in an OCT-

TOOLS user's manual written by Kesting [11]. There are 30 steps in the automation

process. The tools described in the following subsections are used in this automation

process.

4.-.1 Design Tools Once a hardware accelerator architecture is designed, the im-

plementation phase begins. There are many tools available for use at AFIT that assisted

with this research effort: the Synopsys Design Compiler, EDIF2SGE program, Synopsys

"Simulation Graphical Environment (SGE) and Synopsys Debugger were the most effective.

These tools enabled quicker design and implementation of system components than were

possible by practical methods.

This research effort used only "NAND", "NOR", and "INVERTER" logic gates be-

cause these gates are faster and require fewer transistors than the "AND" and "OR" logic

gates. This research was directed towards the use of a standard library of gates. This

25

I -:'.> , "' ••")

library was supplied by Brothers as part of his dissertation [2]. The library only supported

the use of the gates mentioned in addition to a "D"-type flip-flop circuit. Standardizing the

gates was the first step towards automating the entire construction of the DES coprocessor.

4.2.1.1 Sknopsys Design Compiler This tool was very useful for generating

the VHDL structural descriptions from a simple behavioral description. There were some

restrictions on the tool, such as the lack of support for case statements, variable initializa-

tion, and use of user-defined packages within a behavioral description. These limitations

were easily out-weighed by the ability to produce a complete structural description in a

matter of minutes. The Synopsys Design Reference Manual was the primary source for

all work using this tool [18]. All of the components were designed for speed rather than

area. The requirement to speed up simulation far exceeds the requirement for a smaller

chip area. Standard loads and design for "worst case" conditions should ensure proper

functionality of the chip at all times. All of the DES components were generated using

this tool as the first step to obtaining the structuial description. The design generated in

the design compiler was saved in the engineering data interchange format (EDIF) to be

translated by the EDIF2SGE tool.

4.2.1.2 EDIF2SGE Program This tool was used to translate the component

designs into a format used by the SGE tool. This program required a script file and a

configuration file to be written to identify all requirements for the translation. Both files

were located in the Synopsys Simulation Graphical Environment User's Guide [19:7-18-7-

20]. The script file was read into the Design Compiler for proper output file formatting and

the configuration file was used in the conversion to the SGE tool format. The command

was used to convert the EDIF file to the format readable by the SGE tool was edift ge

FILENAME.edf -c configuration filename.

4.2.1.3 Simulation Graphical Environment This tool has many capab•ities

that were not utilized during this research effort. This tool was only used to take the

translated EDIF file and produce a VHDL structural description using a bus to represent

the input and output ports when desired.

26

/ -k

•;./. ,.;., ;" ,• ,. --- U--- ," ."; -,' :• C t• i. .. , '.; ,_. .,

The individual component schematics were retrieved into the schematic editor and a

VHDL netlist was selected for each component. This command produced all of the VHDL

structural descriptions wiLh the proper port formats. Once the designs were complete, the

designs had to be checked for proper functionality.

4.2.1.-4 Synopsys Debugger This tool was used to test the behavioral descrip-

tion prior to generation of the structural description and was also used to test the completed

VHDL structural description after generation. The debugger provided the ability to trace

all of the signals within a given design. This capability was effective when testing all of

the internal component tests prior to connecting the system. Many design decisions were

easily tested by the debugger prior to the implementation of the actual architecture.

4.2..t.5 Lager Place and Route Tool This tool automates the conversion of a

file from a netlist furmat, which can be generated by the SGE tool, to a complete MAGIC

lay out. This tool was used to complete the automation process.

4.3 Host-Node Interfacing

As outlined in Chapter III, there were five interfacing functional requirements that

were confronted in this research effort. A detailed description of the components used to

meet the five functional requirements is included in the following subsections.

4.3.1 Data Interfacing Component This device provides data transfers between the

DES and the host system. There is one subcomponent called paio..latch.buffor that

contains the latches and buffers required to provide 32 bits of temporary data storage. A

mode signal latches the data into the "D" flip-flops and the strobe signal output enables

the data onto the target bus.

An active high RESET signal is used to clear the latches whenever the DES is reset.

All strobe and mode signals frona the host system are generated by the select generator

device. The eystem signals used are discussed in Section 4.3.5. A status register is required

to notify the destination processor of data ready to be processed. The operation of the

status register is described in Section 4.3.2.

27

4 - - 4 V J

4.3.2 Handshaking Port Device This 4-bit rtgister provides state parameters to

both of the processors. The DES is continually updated with the status. The DES and

the host can change the state variables during any given clock cycle. Figure 4 shows the

configuration of the four bits used to provide status information enabling handshaking

between the DES and host system.

Status to DLS 4

Status Dam

Status Write RD/WR Host

I.-

System Data Bus

Figure 4. Stitus Word Configuration

Updating the status register is a three-step process. First, the requesting procfssor

reads the status word and checks the bits of concern. Second, the processor performs the

operation triggered by the v-due of the bit checked. Third, the processor toggles the bit of

concern by performing a write to the status register with a high value on the input bit to

be toggled and the status write select line activated.

Bit "0" is set high by the DES whenever it latches data to the parallel I/O device

destined for the host system. An interrupt or error signal starts the transmission of data

packets to the host system and the lowest-order 10 bits of the first data packet cc-tain the

count of data packets to follow the original message. Sncceeding messages do not have to

28

h ' -.-. ------ >. ,- • - - - ,

I..°•

be signaled with an interrupt or error bit. Bit "I" is toggled low by the host system after

receiving each message from the parallel I/O device.

Bit "1" is set high by the host system whenever an opcode or operand is latched into

the parallel I/O device. The host system has to check bit "3" and bit "1" before sending

an opcode to the DES. If either bit is high, the host system must wait to send an opcode.

If bit "1" is low, the host system can send an operand even though the DES is not in a

ready state. The DES toggles bit "1" low after each message is strobed onto the local data

bus and read into the coprocessor. Bit "2" is the error bit and is used in conjunction with

bit "0" to send an error vector to the host system for processing. Only the DES should

set I'e error bit high. Bit "3" is used to provide the ready status to the host system at

all times. After an opcode is sent to the DES, the ready bit is set high by the DES and

remains high until the opcode has been executed.

The status -to.DES port is designed as a direct link to the Micro-Sequence Logic Unit

(MSL) component to provide state information every cycle to enable the MSL to operate

efficiently. All writes by the DES are performed through the ready.bit, error.bit,

read.local, and write.local bits.

4.3.3 Interrupt Handling Component This device uses the standard 386 signals

interrupt request (INTR) and interrupt acknowledge (INTA). The interrupt register is

divided into two processes: INTRLATCH and INTR.STROBE. The INTR.LATCH process loads

the 8 lower order bits of the 32-bit local data bus into the interrupt regiAter whenever the

INTR signal is high. The INTR.STROBE process then strobes the interrupt vector onto the
system data bus for processing by the host system whenever the INTA signal is active. The

output li- es are placed in a high impedence state whenever the INTA signal is inactive.

An interrupt register provides a means for the DES to request processing time. An

interrupt is used only to indicate to the host system that the DES has data to be trans-

ferred. There are three interrupt vectors that are used within the microcode. The Post

Event Message interrupt notifies the host that null messages for the output arcs are ready

to be processed. The Get Event Message interrupt is used whenever a real event message

has been retrieved and is ready to be sent to the host for processing. The Get Event Nulls

29

/ -

interrupt is used whenever a null event was retrieved and the nulls have been prepared for

the host to transmit.

4-.3.•4 Opcode/Operand Register This device is used to latch address bit "2" of the

system address bus for future testing. The fetch/decode microcode routines is the only

routine that should receive an opcode. All other routines are expecting operands. This

address bit is latched whenever data is strobed into the parallel I/O device by the host

processor. This data is constantly read by the DES for microcode branching determination.

If address bit two a "0," then the data sent to the DES is an opcode. If address bit

two* "1," then the data sent to the DES is an operand. This distinction is checked several

times in the microcode and will cause an error if anything except an operand is received

after the initial opcode is sent. This 1-bit register was validated during the structural

decomposition described in Chapter III.

4.3.5 Select Generation Device This device decodes all of the addresses and sys-

tem signals and provides chip select signals to the parallel I/O, status register, and the

opcode/operand register. All of the DES components that interface with the system are

mapped into the I/O space in the system. Therefore, the 80386 M.I0* signal has to be low

for the DES to interface with the host. A read or write jq signalled by the standard 80386

WR.RD* signal. All of the signals are presumed to be invalid until the address strobe

(ADS*) bit is active. The parallel I/O device is triggered whenever an I/O read or write

is asserted with address-bit "15" set high. The status register is triggered whenever an

I/O read or write is asserted with address bit "8" set high. The opcode/operand latch is

triggered whenever the parallel I/O device is triggered and the write bit is active. Sim-

ple combinational logic was used to construct the chip selects for the parallel I/O, status

register, and the opcode/operand register.

30

A,. .'

./ ".. . ' " ". .

Table 1. RAM Partition Layout ""

Bits Description-,

All 32 bits used LP Delay
All 32 bits used Simulation Time
Two 16 Lit values #_ARCSINIOUT
Bits 25 downto 18 Input Arcs
At most 10 Arcs
Bits 25 downto 18 Output Arcs
At most 10 Arcs

4.4 LP-Specific Information Storage Device

The requirement for a device to maintain the simulation information specific to each

LP is outlined in Section 3.2.2. The configuration and use of the SRAM is described in

more detail in the following subsection.

4.4.1 Random Access Memory (RAM) Device This device provides a local memory

device to maintain simulation data unique to each LP. The configuration of this component

is taken from Figure 4.3 of Taylor's requirements analysis [21]. Some of the first design

decisions were made concerning the RAM device. The base pointer addresses and status

registers were moved to the GPRs in the DES coprocessor and the size of the CAM was

increased to eliminate the need for swap space in the RAM. These enhancements to Taylor's

design provided faster access to specific RAM partitions and reduced the RAM memory

required by a factor of two. A typical LP partition is shown in Table 1. As mentioned in

Chapter III, this device directly supports the Chandy-Misra protocol.

The read and write signals are active high. An active read or write signal with

a chip select triggers the desired operation in the RAM. The highest order two bits of

the address-in vector are used to select the RAM. These two bits provide expansion

capabilities necessary to support other algorithms that require more control store and

RAM for processing a simulation. Only one of the RAMs is implemented in this design

and is selected whenever the two select bits are low. The data in/out port is used to

31

C - , i -,- . .,

transfer data between the local data bus and the RAM device. The RAM device is divided

into a memory componp: and a chip select component.

4.5 Nexi-Event List Management Device

In Section 3.2.3 the requirement for a device to manage the next-event queue tor

the DES is discussed. As mentioned, the CAM can perform a search in 0(1) time. The

configuration of the CAM and the peripheral components used to support the next-event

list management function are discussed in the following subsections.

4.5.1 Content Addressable Memoryj (CAM) Device This device is responsible for

event list management for the DES architecture. The CAM was chosen because each word

in the CAM is searched n parallel. This capability provides significant speedup over other

memory systems, but the to or from address was required to exploit this capability. The

overall design and implementation of the CAM used in this research effort was provided

by Banton as part of his dissertation research [1]. A front end driver was added to the

CAM to free up the DES for other processing requirements. A cross-wiring device was

also added and is described in the next section. The organization of the modified CAM,

associated front-end driver, and adjacent RAM can be seen in Figure 5.

4.5.1.1 Cross-Wire I10 This device was used to cross-wire the input from

the data bus to the CAM and reverse the output to the local data bus. The term "cross

wiring" in this document will refer to the interconnection of a vector of the form 31 down

to 0 to another component with a vector of the form 0 to 31. The DES components are

all designed using bus input and output ports in the form 31 down to 0 while the CAM

component designed by Banton was designed with the ports from 0 to 31 [1]. This device

would not be required in a real hardware circuit and is not included in the Figure 5, but

was used due to the limitations of VHDL.

4.5.1.2 Front-End Driver The front-end driver is designed to free up the DES

coprocessor. The front-end driver performs five functions: Initialize CAM, Find LP Min-

ima, CAM Search ,CAM Write, and CAM Reserve Arcs. The corresponding control

32

Front End Driver

I~ p seletLgi Rgser I '"
SIU£ I..................- l

BstS-N~ Logic egatar~

CAM Aay

III .. i
Data MOWtu Regster

/

Figure 5. Event List Management Device

vectors used to trigger each of these operations are shown in Table 2. An example showing

the use of each function follows in Section 5.2.

The data to be used for each of these commands has to be provided on the previous

clock cycle. The data is latched into the CAM and does not change until the completion

of a given CAM operation. The mask used in the CAM for bit matching is provided

by the front end driver. The CAM-COMPLETE signal is toggled high when the operation is

Table 2. CAM Control Map

CAM Control Operation
090001 Initialize CAM
000010 Find LP Minima
000011 CAM Search
000100 CAM Write
000101 CAM Reserve Arcs

33

S...... _ , y -• . / .•

Table 3. CAM Word Definition

CAM Bits 3Field Name
0 Valid Bit
1-5 TO..LP
6-8 FRom Node
9-13 From LP

114 Reserved Arc
115 -31 ITINE..TAG

- completed. The CAM also latches the corresponding address in the adjacent RAM device

that is used to store the memory pointer for each event. The address is latched in to the

adjacent memory input ports whenever a CAM Write or Find LP Minima is completed.

Each CAM word is broken down into fields that provide search fields for word loca-

tion. Each field has specific meaning which allows the CAM's parallel search capabilities

to be exploited. The 32-bit CAM words are defined in Table 3. Bit "0" is considered the

most significant bit in this CAM design.

The MSL periodically checks the CAM-.COMPLETE signal to continue normal operation.

The CAMLNATCH flag is set appropriately depending on whether the CAM operation is a

success or not. The CAM-MATCH flag is set by a logical "OR" of all of the TAG bits within

the CAM. For example, if a CAM- WRITE is requested and the CAM-MATCH flag is set to a low

value, then the MSL would continue operation assuming that the CAM is full.

Initialize CAM This operation is only performed during the initial load.

The read-only control store memory signals the CAM to initialize through the opcode

decoder. This command requires two control sequences generated by the front-end driver

to complete the operation. This operation also returns a CAM-MATCH high whenever the

command is completed. The TO..LP field within every CAM word is initialized to 31, and

the reserved arc bit is set to zero. All words start in an unreserved mode and are changed

when an input arc is reserved.

34

Find LP Minimum This function provides the event with the minimum

TIME.TAG to the DES coprocessor. There are five steps in this process:

1. Receive TO.LP field for minima location.

2. Find the minimum for the specified LP using the bit and bitnot lines added to the

CAM design. The front-end driver implements a bitwise search starting at bit "15"

of the CAM word.

(a) A search for all CAM words matching the incoming TO.LP field are performed.

(b) The words matching the incoming TO.LP field are stored and routed to the

word select lines.

(c) A subset search using the remaining words is performed after adding Bit "15"

to the search pattern. A "0" is placed in the data input register for matching.

(d) The entire subset of words place their value on the bit and bitnot lines. A

low signal on the bit or bitnot line pulls the respective line low. If no words

match, the line stays at a precharged high level.

i. If bit and bitnot • "0," then some of the words have a "0" in the

searched bit and some have a "1," and the subset of words with "0" in

this bit position are locked in for the next search.

ii. If bit a 1101" and bitnot a "1. " then all of the words have a "0" in the

bit searched and the search will move to the next bit.

iii. If bit a "1" and bitnot a "10," then the bit searched is set to "1" and

the search moves to the next bit.

iv. If bit a "1" and bitnot a "11," then there are no matching words used

in the search and the CAM-MATCH flag is set low and the CAM operation is

completed. Setting the CAMIMATCH flag low will cause the calling microrou-

tine to send an error message to the host system because this CAM function

is never called unless an event is ready.

(e) Goto step c until every bit line has a "1" or "0" and the corresponding bitnot

line has the opposite value.

35

3. Read the CAM word to the output register., The CAM is designed to automatically

select the CAM word matched that is first in the CAM array.

4. Latch the tag match bits into the corresponding address in the adjacent RAM for

future memory pointer retrieval.

5. Invalidate the valid bit of the CAM word read.

The addition of the driver to recognize when all of the words in the search speace

have equal TIN&-TAGs provides significant improvement of simulation performance as the

TIME..TAGs get larger. A design deficiency was realized with the use of this feature late

in the thesis cycle. If a large amount of the CAM words were pulling the bit or bitnot

lines high, a single word cannot pull the corresponding line low. After this problem was'

realized, the CAM was modified to resolve this problem.

CAM Search This function provides a CAM search function that is used

during the Get Event routine lin the microcode. Whenever a message is retrieved, the

status for a specific input arc has to be updated. This function provides a means to search

for another event, on the input arc in question, to determine if the status bit should be

updated. The input data received represents the FROM node and LP fields of the input

arc. The CAM is searched using this data and the valid bit. The CAM-MATCH lines are

automatically set. A CAM-.MATCH - "0" implies there is not a matching word in the CAM.

A CAM-M.ATCH - "1" implies there is another event on the input arc.

CAM Write This operation is responsible for all writes of validated

words to the CAM. The following steps are followed to perform a CAM Write.

1. Search for a suitable CAM word with the valid bi-t a o.o

(a) Search reserved arc space to determine if a reserved arc word is free for word

storage.

(b) Finally, search free CAM space.

2. Write word in the CAM.

36

3. Latch tag match bits into the adjacent RAM address latch for future storage of the

memory pointer.

4. Set the CAM.complete bit high.

5. Set the CAkMATCH bit high if there was a free CAM word found, else set the bit low.

If the CAM.NATCH bit returned to the MSL is low, the DES must generate a CAM full

error to the host system.

CAM Reserve Arcs This function is used to reserve one word in the

CAM array for each input arc. This operation is only performed during simulation initial-

ization. The following steps are used to complete this operation.

1. Search for unreserved word with the valid bit = "0."

2. Write the TO.LP field and FROM fields.

3. Toggle the reserve bit to "1."

4. Return a CAM.COHPLETE - "1" signal.

4.5.1.3 Adjacent RAM This RAM is designed to store the memory pointer
i

for each CAM word. There is a one-to-one mapping between the adjacent RAM words and
i

the CAM words. The address latched by the Find LP Minima and CAM Write functions

is used to address the respective RAM word.

This memory latches the address whenever the ADJ-kM-.LATCH signal is high. The

ADJ.-RAM.control vector sent by the opcode decoder is used to trigger a read or write

command. If ADJ.-RAMcontrol n "01," then a write is performed. If ADJ.-RAM..control

"10," then a read is performed. This device operates like the DES RAM device.

4.6 Architectur"' Control Device

The requirement for this device can be traced back to Section 3.2.4. A detailed

description of the standard and implementation specific components used to construct

the DES are included in the following subsections. The d., " the DES coprocessor was

37

taken primarily from Tannenbaum's Mic-2 architecture [20:196]. The design was enhanced

to provide more speedup and ensure full support the Chandy-Misra protocol. The DES

coprocessor architecture takes form in Figure 6.

4.6.1 DES Clock Design The clock for the DES design provides four-phase pulses

to latch data between components internal to the DES coprocessor. The clock is critical

to the DES control flow architecture. The first phase of each cycle is triggered by the

external system rlock of the Intel Hypercube. Since the system clock is a 25 MHz clock,

the DES coprocessor is designed to run at 25 MHz to enable use of the system clock for

synchronization. Each of the clock pulses is provided by the docking and unclucking of a

"D" type flip-flop. Required setup and hold times were considered when determining the

proper phase lengths.

4.6.2 Mapping Random Access Memory (MRAM) Unit The MRAM operates much

like the control store input mux and the control store RAM. The RAM device is loaded

during the initial load routine with pointers to the start of each microroutine located

in the control store RAM. There are sixty-four 10-bit words of memory in the MRAM.

During normal operation, the instruction register (IR) is the source for MRAM reads.

The MRAM has two components that work together to read and write the proper data

into and out of memory. This device was constructed to support microroutine changes

resulting in microroutine base address reassignment. Bits 31 - 26 of the instruction register

(IR) are connected to the input of the MRAM to indirectly address the memory. The

MRAM is loaded during initialization through ports data.in and address.in. All control,

addressing, and data signals pass through the ports defined by the MAPPING.RAN entity

declaration:

38

*.r -- - - - -

Lrt CL

_ _ _ -- - - - - - - - - --5

.... IIF......

0"1 xi-jr-

figure 6. Discrete Event Simulation Coprocessor

39

0 "- .R2'-

Table 4. Input to Output map~ping "

MSL Control Output Vector

00 or 11 Incrementer
01 Mapping ROM
10 R1 and R2 ,

entity M4PPING.RAM is

port(CHIP.ENABLE.BIT in Wt7._vector (1 dowuto 0);
IR : in VL7T.vector (6 downto 0);
write.signal : in MVL7;
data.in : in MVL7_vector (9 downto 0); .
address.in i: NVL7-.vactor (5 dovnto 0);
NMUX..INPUT: out KVL7.Tvector (9 downto 0));

end MAPPING-ROM;

The first component operates like the input mux of the control store device. If

data.-in.sel(l) is high and data.in..seo.(O) is low when the write signal is active, then

the source address sent to the mapping memory is the add.-sse-in vector. The IR is the

effective address sent to the mapping memory under all other conditions.

The second component acts like the control store RAM. If data.in..sel() is high

and data.in..el(0) is low when the write signal is active, this component performs a

write operation. The data that is sent through the memory buffer register is stored in the

mapping memory for microroutine addressing.

4.6.3 Microinstruction Multiplexer (MMUX) Component Table 4 describes the rout-

ing of the source vector to the output ports. The MMUX is triggered by the MSL device.

This circuit starts the flow within the DES by sending the address of the next microin-

struction to the microinstruction program counter (MPC).

4.6.4 Microinstruction Program Counter Component This device not only provides

a means of addressing the control store, but also is used to signal a reload by setting the

control store address to zero whenever a. RESET occurs. The MPC latches the address

40

F.-

//

provided by the MMUX to the control store and the incrementer on the rising edge of the

fourth clock phase. Any changes after the fourth dock phase are reflected on the next dock

cycle. The RESET signal is used at start up to reset the address sent to the control store

to zero. The RESET signal is active high and is generated by the select generator device

whenever address bit 14 is high. This signal automatically places the DES coprocessor

into the startup simulation state. The output address remains zero until the RESET signal

is inactive.

4.6.5 Incrementer Component This component performs a simple binary increment A

of the 10-bit vector and routes the output to the MMUX as one of the three inputs for

possible use as the control store microinstruction address. The incrementer is required to

progress step-by-step through the microcode.

4.6.6 Control Store Design The control store provides 1024 20-bit words of control

store RAM and 32 20-bit words of read-only memory (ROM) to the DES. The control

was designed to provide the run time loading of a wide range of microroutines dependent

on the protocol to be used in the simulation. The ROM is used to load the control store

RAM with the microroutines. The control store was divided functionally into five separate

components to provide modntlarity to the system: the input multiplexer, the chip select

circuitry, the ROM, the control store RAM, and the output multiplexer. Figure 7 shows

the interfaces included in this design. The interface for this component is described in the

control-store entity declaration:

entity control-store is

port(write: in NVL7;
control-eel, address.in: in NVL7.vector (9 downto 0);
data.in.-.l: in KVL7.vecltor (I downto 0);
data.-i: in NVL7.vector (19 downto 0);
data.-out: out NVL7.vactor (19 downto 0));

end control.store;

41

".\ /: ' ,l.• ' . ' .I"

" _ ." _ : ~ ~ ~~/ i . .' ..

Addressjn CoIIoSe-
0o \,o \to -"

write Input Mux

Dataj~n z- -

C ontrol Boo tstrp C i
Store ,-

RAM

L20

Contro Store Output Mux

Output Io MIR

Figure 7. Control Store Block Diagram

The write signal is provided by the opcode decoder to enable control memory writes

during initialization. The address.in lines are connected physically to the MBR lines 29

down to 20. These bits are used to specify the address for the microinstruction located in

bits 19 down to 0. The microinstructions loaded into control store RAM pass through the

MBR during the initial load. This process is described in Section 5.2 on the DES microcode.

Table 9 shows the bit layout for an initializatioD vector. The MPC is responsible for

selecting the next word to be read via the control.sel lines. The data.in.sel lines are

used to chip select the control store RAM during a write. The data.in port is connected

to lines 19 down to 0 of the MBR as stated above. The data.out port served as the input

to the MIlR to control the DES architecture.

4.6.6.1 Input Muz The input mux determines the source address for the con-

trol store RAM read or write. If the write signal is high and both bits of the data.-in.-el

vector are high, the source address is the address.in lineq from the MBR; otherwise, the

42

N,, /

control-sel lines are the source. The control.sel lines are never the source for a control

store memory write.

entity control-mux is

pr•rt(write : in MVL7;
data.chip.sel: in NVL7_vector (I downto 0);
control.sel, addr.in: in MVL7.vector (9 downto 0);
effective.addr : out NVL7_vector (9 downto 0));

end control-mux;

The effective.addr signal is drivLn by the source as determined above. This signal

changes whenever either of the input addresses changed; therefore, stable addresses are

required until the first dock pulse when the microinstruction is latched into the MIR.

Both of these addresses were designed to be stable for at least that period.

4.6.6.2 Chip Select Circuitry The chip select circuit is responsible for pro-

viding a meme.enable and CS-mux signals to the memory components and the output

mux. The memory components use the mem..enable signal and the output mux uses the

CS.mux signal.

entity chip.sel is

port(write : in KVL7;
controlusel: in MVL7.vector (9 downto 0);
CS..mx, meo.-enable : out KVL7);

end chip.sel;

The control store RAM is enabled by a high signal on the mem.-enable line. The

ROM is triggered by either a high or low transition of the meom-enable line. If CS-mux is

high, then the control store RAM is the source of the next microinstruction; otherwise,

the ROM output is provided to the MIR as the next microinstruction.

43

-\ A
'-V '.; - . __. . .._. _.____' /

Z

4.6.6.3 Read-Only Memory The ROM is a bootstrap routine used to load

the control store RAM during the initial load prior to the simulation initialization. There

are 32 20-bit words stored in the memory. Only five bits are required for addressing this

memory because there are only 32 words of memory.

4.6.6.4 Control Store RAM The writeable control store memory contains the

routines responsible for supporting various algorithms through the implementation of the

four SPECTRUM functions in microcode. The interface for this component occurs through

the entity declaration identified by the control-memN entity:

entity control mem is

port(vrite, mem.-enable in NVL7;
data-chip-sel : in MVL7.vector (1 downto 0);
addr-sel : in MVL7Tvector (9 downto 0);
data.in : in MVL7.-ector (19 downto 0); --- ,

data-ou t: out MVL7_vector (19 domnto 0)); --

end control-mem;

The mem.enable signal has to be high for the memory to perform a read or write

of a memory word. When the data.chip.sel bits are both high, the DES was identified

for a write during the initial load. A write occurs whenever these two conditions are true

and the write signal is high. A read occurs whenever these two conditions are true and

the write signal is low. During a read or write, the address is provided on the addr-sel

lines. During a write, the data is provided through the data-in port. All output data is

directed to the output mux via the data.out port.

4.6.6.5 Control Store Output This cc iponent is a simple 2-to-1 mux. The

source for the output of the mux is selected from the read-only control stcre input vector

and the writeable control memory vector. The interface to the chip select, memories, and

the MIR are defined by the ports of the control-store.out entity declaration:

44

- 44

-- -*-- ' " . -. I
.. _]- .; .. _ .. .- I .

* ..- *I-

entity control.tsore.out is

port(chip.sel: in MVL7;
control-store-word, hard_.ired-word: in MVL7_vector (19 downto 0);
out.to..NI : out MVL7_vector (19 downto 0));

end control-store-out;

If the chipesel signal is high, then the output receives the read-only word; otherwise,

the output receives the writeable control store memory word. This process is triggered by

a change in any of the inputs, therefore, the input should be stable prior to and during the

first clock pulse. The output of this component provides the input to the MIR..

4.6.7 Microinstruction Register This circuit provides a means of holding the se-

lected microinstruction constant throughout a given clock cycle. The MIR is designed as

a simple register with a data enable and a strobe pin. The input vector to this component

is provided by the control store component. The output vector is broken down into the

following three vectors: eight bits to the opcode decoder for control signal generation, six

bits to the RI mux which is used to select the input for PATH.A of the internal DES bus,

and six bits to the R2 mux which is used to select the input for PATH.B on the rising edge

of the first clock phase and remains latched until the next rising edge of the first phase.

4.6.8 DES Opcode Decoder This component provides most of the control signals

necessary to enable proper interaction of the subcomponents within the DES architecture.

This component also controls the major components outside of the DES coprocessor which

includes the RAM, CAM, PARIO, adjacent RAM, status register, and the interrupt reg-

ister. A list of all the microinstructions supported by the opcode decoder are included in

Appendix C. The DES opcode decoder interfaces to the DES architecture through the

OPCODE.DECODER entity declaration:

45

-. -, '. .. " - / . - . _

/ I

entity OPCODEDECODER is

port(opcode-fromMIR : in MVL7.vector (7 downto 0);
MSL-control : out MVL7.vector (3 downto 0);
ALU-control : out MVL7.vector (2 dovnto 0);
NZ-control : out MVL7; W

SHIFTER-control : out MVL7.vector (2 dounto 0);
MBR.control : out MVL7_vector (1 downto 0);
MAR.control : out MVL7;
RlMUX.control : out MVLT.vector (I downto 0);
R2NUX.control : out MVL7.vector (I dovnto 0);
ANDLATCH.control : out MVL7;
RAM-control : out MVL7.vector (1 downto 0);
RAM.SEL.control : out MVL7.vector (1 domnto 0);
AMUX.control : out MVL7;
CONTROLSTORE.control : out NVL7;
CAM.control : out MVL7Tvector (2 to 7);
CAM.READ-control : out MVL7;
ADJRAN.control : out MVL7.vector (1 downto 0);
INTR.control : out MVL7;
READ.LOCAL-control out MVL7;
WRITELOCAL-control out MVL7;
ERROR.control : out MVL7;
READY.control : out MVL7;
STATUS-control : out MVL7;
PARIO.STROBE-control : out MVL7;
PARIO.MODE.control out MVL7;
PARIO.CLEAR.control out MVL7);

end OPCODE.DECODER;

The opcode decoder can be implemented with a simple gate array. The input control,

opcode.from.MIR, received from the MIR signals each of the outputs to a predetermined

state. The output control signals are discussed in detail within each of the subcomponent

descriptions.

4.6.9 RI/R2 Muz Components These components were specifically designed to

provide direct access to the special-purpose registers containing the base address pointers

and status registers for the LPs. These components provide the source to the Ri and

R2 decoders, respectively. The accumulator (ACC) contains the LP number for a given

opcode and is used to select the correct register. Only five bits of the ACC are connected

46

-, "

to the multiplexer. The remairing bit is sent by the opcode decoder to select the base

pointer or the status register. If the control bit is low, then the base pointer is selected. If

the control bit is high, the status register is selected. Figure 8 shows the complete layout

of the registers within the DES.

4.6.10 Ri and R2 Decoder Components Since the DES was designed using a verti-

cal microcode approach, these two decoder components were required to decode the register

addresses for the general/special-purpose register (GPR.) bank. These components provide

the address of the GPR to be strobed onto the two internal data paths of the DES copro-

cessor. These circuits are triggered by any change in the respective decode inputs. The

row and column addresses are routed to the GPR register bank. The output of the Ri

decoder is also routed to the "AND" latch. The row and column vector are produced with

an active low bit in the selected row or column. Eight bits of row and column address

produce 64 combinations of addresses. An active low in a row and column selects the

- - proper word. A description of the use of these input vectors is provided in Section 4.6.12.

4.6.11 "AND" Latch Component The "AND" latch was also required due the ver-

tical nature of this von Neumann architecture. This component provides the destination

address to the GPR register bank. This circuit triggers the row and column addresses to

the GPR register bank on the rising edge of the fourth clock pulse. If the control bit from

the DES opcode decoder is high, the GPRs perform a write to the destination register. If

the control bit is low, the row and column vectors are set to all high signals. This setting

effectively disables the destination write process.

4.6.12 Genertil/Special-Purpose Register Bank This register bank provides the DES

with 64 registers that are 32 bits wide. These registers are addressed by the Ri decoder,

R2 decoder, and the "AND" latch. The RI and R2 decoders provide addresses for reads

onto the appropriate data paths. The "AND" latch provides a destination address for the

GPR. register bank. The GPR bank of registers is arranged in a 8 X 8 square. Figure 8

provides the register names and an overall view of the lay out of the registers.

477

/ I/

(8 x 8 Register Bank)
(Columns)

0 1 2 3 4 5 6 7

0 Base Base Base Base Base 'Base Base Base

1 Base Base Base Base Base Base Base Base

2 Base Base Base Base

3 TO/LP
0 4 Status Status 'Status Status Status Status Status Status

5 Status Status Status Status Status Status Status Status

6 Status Status Status Status '0' 'i' '-1' From
___ ___ Mask-

7 IR ACCTO/LIP ArIsin
7 ER ACC Mask Mask \ Count

Figure S. General/SpecialPurpose R ister Configuration

48

The register numbers are calculated by the (rownumber*8)+columnnumber formula.

The row and column number are determined by the low bit in the row and column vector,

respectively. The GPRs have the initial values listed in Table 5.

All of the registers are writeable. The registers are loaded during the bootstrap ROM

routine along with the control store and the MRAM. Register 55 provides a mask to be

used in determining the from field identity. Register 59 is also a mask register, but it is

used to determine the destination LP's identity. Register 60 is the ARCS.IN.STATUS mask

used to determine if an event is ready for processing and is also used to determine the

count of operands following a given opcode. The use of all these registers will be seen in

great detail in Section 5.2 on the DES microcode.

4.6.13 PATH "A" Latch Unit The only function of this unit is to latch the input

from the GPRs to the multiplexer for the "A" internal data path (AMUX) on the rising

edge of the second clock phase and hold the lines stable until the next clock cycle. This

component requires no control from the DES opcode decoder.

4.6.14 PATH -B" Latch Unit This unit is designed to operate like a standard latch.

The input data is continually read until the second clock phase. The rising edge of the

second clock phase triggers the data through to the output ports and holds the data stable

until the next clock cycle. This latch routes all 32 bits to the DES Arithmetic Logic Unit

(ALU) and the lower order 12 bits to the Memory Address Register (MAR).

4.6.15 Memory B'zffer Register (MBR) Component The MER provides a bi-directional

flow of data between the local data bus and the internal DES coprocessor. This register

is used heavily during the simulation startup routine. There are separate read and write

signals generated by the DES opcode decoder to select the direction of data flow. If the

read signal is active, then the MBR is in the input state and reads the data off of the local

data bus and routes it to the AMUX on the rising edge of the fourth clock pulse. If the

write line is active, then the MBR transfers the datai vector, shifter.DATA, to the local

data bus on the rising edge of the fourth clock pulse.

49

Table 5. GPR Register Original Contents

Register Number Start Value Logical Name
1 00000000000000000000000000010111 LP1 Base Ptr
2 00000000000000000000000000101110 LP2 Base Ptr
3 00000000000000000000000001000101 LP3 Base Ptr
4 00000000000000000000000001011100 LP4 Base Ptr
5 00000000000000000000000001110011 LP5 Base Ptr
6 00000000000000000000000010001010 LP6 Base Ptr
7 000000000000000000000C0010100001 LP7 Base Ptr
8 00000000000000000000000019111000 LP8 Base Ptr
9 00000000000000000000000011001111 LP9 Base Ptr
10 00000000000000000000000011100110 LP10 Base Ptr
11 00000000000000000000000011111101 LP11 Base Ptr
12 00000000000000000000000100010100 LP12 Base Ptr
13 00000000000000000000000100101011 LP13 Base Ptr
14 00000000000000000000000101000010 LP14 Base Ptr
15 00000000000000000000000101011001 LP15 Base Ptr
16 00000000000000000000000101110000 LP16 Base Ptr
17 00000000000000000000000110000111 LP17 Base Ptr
18 00000000000000000000000110011110 LP18 Base Ptr
19 00000000000000000000000110110101 LP19 Base Ptr

32 to 51 00000000000000000000000000000000 LP Status Regs
52 00000000000000000000000000000000 Constant "0"
53 00000000000000000000000000000001 Constant "+1"
54 11111111111111111111111111111111 Constant "-1"
55 00000000000000111111110000000000 FROM.MASK
56 00000000000000000000000000000000 Instruction Reg
57 00000000000000000000000000000000 Accumulator
59 00000011111111000000000000000000 TO.LP.MASK

* 60 00000000000000000000001111111111 ARCS.STATUSMASK
63 00000000000000000000000000000000 Count Reg

Others 00000000000000000000000000000000

/

50

Table 6. ALU Opeiation

ALU Control I Operation

000 Addition
001 Logical AND
010 Logical XOR
011 Logical OR
Else Pass Through

4.6.16 Memory Address Register Component The MAR unit was designed to ad-

dress the DES RAM unit when performing read and write operations. The rising edge of

the third clock phase strobes the address through to the output ports, but the source input

only changes when the DES opcode decoder control signal is high at any time during the

clock cycle. This enhancement allows the holding of a memory address for multiple cycles,

when necessary.

4.6.17 Path "A" Multiplexer Component This circuit was designed when the re-

quirement for having multiple inputs for the same input into the ALU had to be resolved.

The inputs are each 32 bits wide and the output is a 32-bit vector. The DES opcode

decoder control signal determines the :urce vector to drive the output lines. If the control

signal is low, the source vector is the MBR; otherwise, the source vector is the "A" latch.

4.6.18 Arithmetic Logic Unit The ALU is responsible for all logical and mathemat-

ical operations required in the DES. This circuitry interfaces with two 32-bit input data

paths and outputs one 32-bit vector to the shifter. This circuit also sets the zero latch bit

high if the result of the operation equals zero; otherwise, the zero latch bit is set to a low

value.

The DES opcode decoder 3-bit control vector determines the operation to be per-

formed by the ALU. Table 6 lists the control vectors and the related operation. All oper-

ations generatt a high or low signal on the zero latch output signal. All of the operations

were included only after their use was validated when writing the microcode.

5i

Table 7. SHIFTER Operation

SHIFTER Control Operation
000 No Shift
001 Left Shift 1 bit
010 Right Shift 1 bit
011 Left Shift 8 bits
100 Right Shift 8 bits
Else No Shift

4.6.19 Zero Logic Latch This circuit is responsible for latching the zero latch bit

from the ALU to the MSL component. The ALU signal is produced after every operation.

A low signal is produced if the output of the ALU is not equal to zero and a high signal if

the output equals zero. The DES opcode decoder control signal is responsible for latching

the data into the MSL component. This control signal is generated by the opcode decoder

every clock cycle to force the Z.LOGIC unit to update the zero flag state parameter in the

MSL. The MSL requires this information to correctly execute the microinstructions.

4.6.20 Shifter Component The shifter unit performs four different shifts and a pass

through operation. The five functions of the SHIFTER are: no shift, left shift one bit, right

shift one bit, left shift eight bits, and right shift eight bits. The shifts are used throughout

the microcode to either align vectors to be masked or to format output messages. The

control vector breakout for shifter operation caa be easily seen in Table 7.

4.6.21 Micro-Sequence Logic Component This circuitry is the primary controller

used to determine the present state and the next state of the DES coprocessor. This

unit is necessary to progress through the microcode correctly. This component interfaces

with most of the state parameters required to determine the next logical path to follow.

The opcode decoder controls the parameter checks to perform and the MSL provides the

control to the MMUX depending on the parameter values found. The state parameters

and control ports are defined in the following MSL entity declaration:

52

4.

entity MSL in

port(CAM.MATCH: in MVL7;
CAM.COMPLETE in MVL7;
Z.flag: in MVL7;
opcode.operand: in MVL7;
READ.LOCAL-.WRITE.REMOTE: in MVL7;
WRITE.LOCAL.READREMOTE: in MVL7;
NSL.control: in MVL7Tvector (3 downto 0);
NMUX.-control: out MVL7.-vctor (1 downto 0));

end MSL;

The CANM.MATCH, CAM.COMPLETE, Z.f lag, opcode.operand, READLOCAL,.WRITEREMOTE,

and WRITE. LOCALREAD_.REMOTE signals are the state parameters of the DES. The CAM

provides the first two signals at the completion of each operation. The zero logic register

provides the Z-f lag each cycle. The details of these signals follows in the CAM, Zero

Logic, and Status Word sections, respectively.

The description of the behavior of the MSL is described in Table 8 which provides

an if-then type construct listing of its internal operation.

4.7 Summary

The DES coprocessor was designed with general-purpose simulation support as the

primary design objective. The Chandy-Misra paradigm is implemented in microcode to

provide a base f r DES simulation tests. The DES is designed to potentially support

many paradigms.' The CARWASH simulation was used to provide test vectors to test the

microcode routines and the DES interoperation.

This DES design takes the form of a standard von Neumann architecture. Every

component is mani ulated with control signals. The opcode decoder is the primary source

of the control lines for the external and internal DES components.

The time delays built into the structural VHDL code were determined by finding the

propagation delays using HSPICE. All of the propagation delays for the gates used in the

DES design were obtained with ESPICE runs.

53

• -II. " I- - :

Table 8. MSL Input to Output Mapping

MSL Control] Parameter Value MMUX Control

0000 If opcode-operand = 0 Select R1 and R2
0000 If opcode-operano = 1 Select Incrementer
0001 If opcode.operand = 0 Select R1 and R2

and READ-LOCAL = 1
0001 Else Select Incrementer
0010 if Z-flag = 1 Select R1 and R2
0010 If Z-flag = 0 Select Incrementer
0011 If not READ.LOCAL = 1 Select R1 and R2
0011 Else Select Incrementer
0100 If not WRITE.LOCAL = 1 Select R1 and R2
0100 Else Select Incrementer
0101 If CAM-MATCH = I Select R1 and R2
0101 Else Select Incrementer
0110 If CAMICOMPLETE = I Select R1 and R2
0110 Else Select Incrementer
0111 JUMP Select Ri and R2
1000 JUMP Select Mapping ROM
1001 If not CAM-MATCH = 1 Select R1 and R2
1001 Else Select Incrementer
1010 If not CAMCOMPLETE = 1 Select RI and R2
1010 Else Select Incrementer
1011 If not CAM-COMPLETE = 1 Select R1 and R2

and not CAM-MATCH = 1
1011 Else Select Incrementer
Else Select Incrementer

54

. .,./ ,1<

.. .. , .:/

V. Detailed Microcode Design

5.1 Introduction

The microcode must be written to take full advantage of all the functionality built

into the hardware coprocessor. The hardware developed 'o achieve speedup over a wide

range of simulations as well as simulation protocols is of no use without the effective

and efficient development of microcode to control the entire architecture. A step-by-step

process was developed from the structural decomposition of the behavioral VHDL code

written by Taylor [21]. The formats for the opcodes and operands is also included in this

chapter to clarify the content of a given data packet.

An example follows the description of the microcode in an attempt to clarify the

interaction of the microcode with the RAM, CAM, and LP status registers. The RAM,

CAM, and status registers are the primary components altered by the microcode. Only

snapshots of the hardware devices are included.

5.2 DES Microcode

The microcode is written to implement the five functions of the SPECTRUM testbed

while providing direct support for the Chandy-Misra paradigm. As mentioned earlier, the

Advance Time function is included in the Get Evervt routine; therefore, the five functions

are implemented as four microroutines located in the control store RAM. Addresses of the

starting address of each routine is stored in the mapping ROM for use by the fetch/dccode

routine. There are five routines located in the control store including the fetch/decode

routine. Two additional routines, Startup Simulation and Fetch/Decode, were included to

load the microcode into the control store and process the opcodes, respectively. All of

the microcode was written using the 132 microcommands located in Appendix C. The

algorithms in Appendix A were followed to write the microcode. Table 9 displays the

layout of the fields and their meaning.

5.2.1 Startup Simulation Routine The control store ROM code is designed to load

all of the microcode routines into the control store's RAM, initialize the CAM, initialize

55

/ ' {" ,.•• ,, "f

Table 9. Load Vector Format

[Bits] Data Vectc 'ield

31 - 30 Chip Select
29 - 20 Addresc for Control Store
25- 20 Address for Mapping RAM
19- 00 Data for Control Store
09- 00 Data for Mapping RAM

the general/special-purpose registers, and load the MRAM with the indirect addresses of

each microcode routine!. The RESET signal is designed to automatically set the address fiom

the MPC to the control store to address "0." Once this code is called, an opcode with a

value of "0" is received to start the loading of the subroutines. Loading continues until

another 3pcode is received with a value of "0." The ROM microinstructions are contained

in 32 20-bit words of control. Once this process is completed, the fetch/decode routine is

called to begin normal operation.

5.2.2 Fetch/Decode Routine This microcode is designed to wait for an incoming

opcode, load registers that are used by all of the subroutines, and call the desired subrou-

tine. The opcode is stored in the accumulator because bits 25 down to 18 of the opcode

contain the TO LP number. This 8-bit field is used as an input to the Ri and R2 muxes to

access t ie base pointers and status registers. The following algorithm provides the basic

flow of the Fetch/Decode routine.

1. Check for Opcode, loop if not.

2. Strobe data in from the Parallel Input Device.

3. Store the opcode in the IR (Register 56).

4. Load the operand count into the count register (Register 63).

5. Load the TO LP field into register 27.

6. Store the opcode in the accumulator (Register 57).

7. Jump to the address from the MRAM.

56

5.2.3 Initialize, Simulation This routine is designed to load all of the LP specific

information into the RAM, set up the status registers for each LP, send null messages to

each output arc, and reserve a CAM word for each input arc. A CAM word is reserved

for every input arc to ensure that at least one message can be stored in the CAM for each

input arc. The opcode for this routine is 000001. This routine must be sent to the DES

for each LP involved in a given simulation.

5.2.4 Post Message This routine processes all incoming messages for the host node.

In general, the Post Message routine stores the event in the CAM, stores the memory

pointer in the adjacent RAM, and updates the LP's status register. This routine is re-

sponsible for signaling a CAM..FULL whenever the CAM is full during the CAM write process.

The opcode used to signal a Post Message is 000010.

5.2.5 Get Event The Get Event routine determines if there is an event ready for

the LP specified in the opcode message sent by the host system, retrieves the event, sends

the message to the host for processing, updates the LP's status register, and updates the

simulation time for the specified LP. This function is called whenever the DES returns a

CAM-.FULL to the host node to free up CAM space or when an event is ready to be processed.

The CAM front-end driver is used by this routine to find the event with the minimum time

tag and also to search for another event matching the TO and FROM information of the

event just processed. This search function is used to determine if there is another event

on the same input arc. If the CAM returns a CAM-M.ATCH, then there is another event on

the subject input arc. The opcode used to signal a Get Event is 000011.

S. 5.2.6 Post Event The Post Event routine is only used to send null messages to all

output arcs except the arc receiving the real message. The output arcs are retrieved and

compared to the arc encoded in the opcode packet to determine if a null message should

be formatted and sent to the host for processing. The opcode used to signal a Post Event

is 000100.

5.2.7 Opcode Format Table 10 shows the opcodes used for each routine. All of the

32 bits are not always of use to the DES. The opcode field is stored in the IR to provide

57

A

Table 10. Opcode Formats

Instruction Bits Opcode Field
All Instructions 31- 26 OPCODE Number

25-23 TO-NODE
22-18 TO-LP

Post Message and Event 17- 15 FROM-NODE
InitSim and Get Event 17- 15 Unused
Post Message and Event 14- 10 FROMLP
Init.Sim and Get Event 14- 10 Unused
InitSim and Post Message 09- 00 Operand Count
Get and Post Event 09-00 Unused

the address for the MRAM. The IR is used by the fetch/decode routine to jump to the

corresponding routine in the microcode.

5.2.8 Operand Format The Get Event routine is the only instruction that does not

require any operands to complete. The Post Message routine requires two operands unless

the event is a null message. The TIME-TAG and the MEM.PTR are the only two operands

that are expected by the Post Message routine. Both operands use all 32 bits of the data

vector. The operand count is used to determine when the MEMPTR should be set to "0" and
when the MEMPTR operand follows the TIME-TAG. The Post Event routine only requires

one operand, the TIME-TAG, and all 32 bits of the data vector are used. Table 11 shows

the operand format used for the initialize simulation routine.

5.3 Microcode Routine Execution Examples

The execution of the microcode routines primarily causes changes in the RAM, CAM,

and LP status registers. Table 1 shows the configuration of each partition in RAM. The

meaning of each field within the CAM is described in Table 3. A CAM word is valid when

the "V" column as seen in Figure 9 is set to "V" and invalid when set to "N". The status

register is initially set to contain a "0" for each input arc starting with a "0" in the least

significant bit. The following example shows the effects on the RAM, CAM, and status

58

X .

Table 11. Initialize Simulation Operands

Operand Number Bits Opcode Field]
1 31- 18 Unused

17- 15 I/0_ARCNODE
14- 10 I/0_ARCLP
09-00 Unused

2 31- 16 #.ARCSOUT
15-00 #_ARCS.IN

3 31-00 LP.DELAY
4 31 - 00 SINMTIME
5 31- 18 Unused

17- 00 TIME-TAG __..

6 31-00 MEM.PTR

registers after each routine is executed. The sequence begins with the Initialize Simulation

opcode and progresses through the opcodes to the Post Event opcode.

Figure 9 shows the RAM, CAM, and status register contents after execution of the

Initialize Simulation opcode sent for LP 5. The RAM has been initialized, an arc has been

reserved in the CAM for each input arc, and the status register contains a "00" in the

lowest order two bits.

Once all of the lrardware devices have been initialized, the DES should start receiving

messages to store in the CAM. Figure 10 shows the new memory contents after a message

is received for LP 5. The message has been stored in the first word of the CAM. The

respective CAM word has been set to the valid state. Since a message was received on the

first input arc, bit "0" of the status register was updated to a "1."

Assuming three more messages have been received, what do the RAM, CAM, and

status register contain? Figure 11 shows that all of the words have been stored in the

CAM and their respective valid bits set. Every input arc for LP 5 has an event present in

the CAM; therefore, the status bits for the input arcs are set to all 1s.

Now that there is an event ready for LP 5, Figure 12 shows the results of a Get Event

opcode for LP 5. The RAM has been changed to reflect the new safe time of "6." The

59

/

CAM

V TO LP FROM Info R Time.Tag

RAM (1) (5 bits) (8 bits) (1) (17 bits)
N 5 5/1 1 XXXXX
N 5 4/2 1 XXXXX

NOD/LP : 4/2 N 31 X/X I XXXXX
NODE/P: 5/1 N 31 X/X I)XXX=
#_/0Arcs: 1/2 /
Sim e: Tiime
LPDelay4

N 31 X/X I XXXXX
N' 31 X/X I XXXXX
N' 31 X/X 1 XXXXX

LP Status Register

00000000000000000000001 111111100i

Figure 9. Initialize Simulation for LP 5

CAM

V TO LP FROM Info R Time-Tag

RAM (1) (5 bits) (8 bits) (1) (17 bits)
V 5 5/1 1 7

! 4 N 5 4/2 1 XXXXX

NODE/LP: 4/2 N 31 X/X I XXXXX
NODEWLP: 5/1 N 31 X/X 1 XXXXX

#._IJ/OArcs: 1/2
Sim imeI 0
LPDelay :4 *

N 31 X/X I xXXXX
N 31 X/X 1 XXX
NI 31 X/X I XXXXX

LP Status Register w..

OOO00000000000000000001 111111101

Figure 10. The first Post Message for LP 5

60

CAM 7

V TO LP FROM Info R Timejag
RAM (1) (5 bits) (8 bits) (1) (17 bits)

V 5 5/1 1 7

NODEILP: 4/7 V 5 4/2 1 6

NO N 14 7/5 1 XXXXX
NODE/ILP: 5/1 N 14 613 1 XXXXX

#_IO_.Arcs: 1/2 /
imJIme: 0

LPDela:4

v 5 4/2 0 9
V 5 5/1 0 14

N 31 X/X 1 XXXXX

LP Status Register

1000000000000000000000011111111111

Figure 11. The Fourth Post Message for LP 5

time units are not of concern at this level. The CAM word with the smallest time tag has

been retrieved and invalidated. The status register has not been changed because there is

still an event on the input arc in the CAM.

Figure 13 shows the results of two Get Events in one step. All three of the components

have been modified. The simulation time in the RAM device has been updated to "9,"

because the time tag of the last message retrieved contained a time tag of "9." Figure 13

shows the results of two CAM find minimum time tag commands. Since the "R" bit of the

CAM is still set to a "1" for the input arcs initially reserved, the arcs remain reserved for

future CAM writes.

The RAM, CAM, and status register are not updated during a Post Event opcode,

but the information within the RAM is retrieved for processing the opcode. A null message

must be formatted and sent to every output arc not receiving the real message. Figure 13

shows the location of the output arcs that must be retrieved. There is only one output

arc for LP 5, but any given LP could have multiple output arcs. The #.I/0.Arcc field

61

CAM -

V TO LP FROM Info R TimejTag
RAM (1) (5 bits) (8 bits) (1) (17 bits)

V 5 5/1 1 7

NODE/LP :4/7 N 5 412 1 6
NODELP: N 14 7/5 1 XXXXX
NODF/LP :5/I*_IOMArcs : 112 N 14 6/3 1 XXXXX
Sim Tie:6i
LPDelay: 4 i

V 5 i/2 O0 9
Vi 5 5/1 0 14
NJ 31 X/X 1 XXXXX

LP Status Register
oooooooooooo11111111111

Figure 12. The First Get Event for LP 5

CAM
V TO LP FROM Info R Timecjag

RAM (1) (5 bits) (8 bits) (1) (17 bits)
N 5 5/1 1 7

NODLP :41 N 5 4/2 1 6
NODEILP: 4/2 N 14 7/5 1 XXXXX

NODEXLP 51 14 6/3 1 XXXXX
#._I/O_Arcs: 1/2 N 16/ li XX
"SimTime:9
LP._Delay: 4 I ! .I I

N 5 412 0 9

V 5 5/1 0 14
N 31 X/X 1 xxxxx

LP Status Register

ooooooooooooo oo oo o o1I11111101

Figure 13. The First Get Event for LP 5

62

would also be retrieved to locate the first output arc and to supply the count of arcs to be

processed.

5.4 Summary

This chapter shows the interoperation of the hardware and microcode. The SPEC-

TRUM filters were decomposed and routines were designed to support the Chandy-Misra

protocol. Two DES routines were written to support the four filter routines described in

this chapter. An example of execution of a series of opcodes and the related changes to

the hardware components were detailed in this chapter to clarify the interoperation of the

hardware and microcode.

The SPECTRUM filter routines designed for the DES architecture are loaded into the

control store during the Startup Simulation process. Indirect addresses are used to jump

to the correct microroutines. The microinstructions provide the control flow required to

process events through the DES.

63

VI. DES Coprocessor Design Test

6.1 Introduction

A mixture of a behavioral and structural description of the DES coprocessor was

implemented using Synopsys VHDL. All of the behavioral descriptions were written de-

scribing the behavior of low-level components, but not down to the gate level. A reference

to the source code listing is located in Appendix D.

Thorough interface testing between the DES and the CPU was not possible because a
working description of the Intel Hypercube iPSC/2 was not available. The interfaces were

tested using 80386 signal standards as described in Volume II of Intel's Microprocessor

Manual [9:5-290-5-312]. The DES was considered an I/O device with reference to the CPU,

therefore, the appropriate MI0* signal value was used to designate an I/O signal. The

port mapping between the DES and the CPU is located in the top-level DES.SYSTEM.vhd

file, located in Appendix D.

A very high-level VHDL test bench was designed to model tLe characteristics of a

Hypercube node. The technique used to gather the test data for the DES design test plan

is also discussed in this chapter. The final section contains the actual test cases and the

results of the tests.

6.2 Design Test Methodology

The DES coprocessor design was implemented in a modular fashion. System testing

was divided into hardware and microcode testing. Individual components were tested and

integrated with other DES components to form logical groupings. This approach was used

until all high-level units were designed and tested. The hardware integration had to be

completed prior to system software integration.

The logical grouping approach to system testing resulted in eight high-level functional

units. The resulting functional units are: the DES coprocessor, a parallel I/O port, a

CAM, a RAM, an Interrupt register, a Status register, an Opcode/Operand latch, and the

DES select generator. The DES coprocessor was further divided into 23 subcomponents

64

/ *

as described in Chapter IV. A whitebox test a.pproach was followed for each of these

subcomponents. The ROM routine and the Initialize Simulation routines were used to

test the internal structure of the DES coprocessor. The parallel I/O device, the Status

register, and the Opcode/Operand latch had to be integrated into the design prior to

testing the control store and MRAM load process. All of the input and output ports were

checked for validity during this process.

The integration testing of the parallel I/O device with the DES coprocessor was

performed during the initial microcode load. The transfer of data into the DES structure

was verified during the initial load of the microcode by listing the control store RAM after

loading was completed. The parallel I/O ports were traced to ensure data integrity was

maintained. The status bits and opcode/operand bit were checked for accuracy.

The next step was to integrate the RAM, CAM, and an interrupt register into the

design to complete the DES structure. Once all of these components were implemented,

the interrupt, error and event execution testing began.

Basically, the followirg four areas provide the testing coverage required to effectively

test the implementation of the DES: control store RAM and MRAM loading, interrupt

processing, error processing, and event processing. The following sections will detail the

tests conducted to meet requirements.

6.3 DES Test Bench Design

This process is designed to emulate the 80386 processor at a high level. The signals

generated by this design were also designed to match the signal assignments described in the

Microprocessor Manual [9:5-290-5-3121. A more detailed description of the interface follows

in Section 6.4. The test bench was responsible for loading the DES Control Store RAM

and MRAM as described in Chapter IV. All of the signals generated in this architecture

can be found in the DES=TESTBENCH entity declaration:

65
A!

// i

entity DES.TESTBENCH is

port (INTR : in DotX;
CLK2 : out MVL7;
SYSTEMDATA.BUS : inout BusX (31 downto 0);
SYSTEMADDRESS : out MVL7_vector (31 downto 2);
W.R :out MVL7;
M.IO : out MVL7;
INTA : out MVL7;
ADS : out MVL?;
RESET : out MVL7);

end DESTEST.BENCH;

The CLK2 signal is generated by the MASTER-CLOCK process located within the

d.s-test.bench.vhd file. All of the remaining I/0 signals are generated or acted upon

in the TIANSFER..DATA process. The signals generated by this process are triggered on the

rising edge of CLK2. The DES.TEST algorithm follows the steps in Table 12.

Table 12. Test Bench Algorithm
Step I Instruction

1 Load Control Store
2 Load Mapping RAM
3 Retrieve OPCODE
4 Send OPCODE
5 Send Operands
6 Process Errors and Interrupts
7 Loop to Step 3 Until END OF FILE

The test bench was created one part at a time along with the DES coprocessor and

was designed step by step in line with Table 12. As the DES coprocessor was upgraded,

the test bench was upgraded to test the functionality of the coprocessor. The errors and

interrupts were simply read and handled by the test bench. Checking for proper error and

interrupt codes was not performed. Assertion statements were used to ensure the proper

path was followed for each opcode.

66

6.4 DES Test Data

Test data from an actua! Intel Hypercube run was gathered to test the DES for

proper functionality using realistic data. Each of the runs produced a log file for each LP.

The MAXTIME attribute in the application.h file can be set to the total runtime desired

for a simulation. The test data was gathered using 8 LPs running on a single node of the

Intel Hypercube iPSC2. These files were decoded and translated into a usable format for

the test bench.

Test data for the design was gathered from a 25-second run of the "NULLWASH"

simulation developed by Van Horn [22]. The Hypercube was completely unloaded when

the test runs were conducted to ensure realistic filter delays were obtained. The DEBUG

attribute within the u.null-mess .c file was turned on to print all event information for -

each LP. This data was used to test each individual routine of the DES coprocessor. The

test data was converted into a usable format for the test bench.

Simulation average processi.-,g times per SPECTRUM filter was gathered from the

"NULLWASH" simulation with a run time of 1000 seconds to ensure stable and accurate

results. This data was used for comparison with the hardware implementation execution

times to determine speedup. The DEBUG attribute was turned off in the u-nullmess. c

file to turn off filter outputs. The information gathered with this configuration was the

total processing time per filter, number of filter calls per filter, and the total processing

time per simulation.

6.5 DES Coprocessor Design Testing

The DES design tests were conducted with the aid of VHDL simulations using the

VHDL simldation environment and the Synopsys Debugger environment. The following

four subsections contain the details of the testing results.

6.5.1 Control Store and MRAM Load The microcode written to support the Chandy-

Misra protocol was used to test the initial load of the control store RAM and the MRAM.

The microcode vectors were compared to the microcode and MRAM memories by listing

the memories. Some of the decimal microinstructions located in the file that are loaded

67

/' /

,//

into the control store RAM and MRAM were converted to hexadecimal numbers to allow

a direct comparison with the control store RAM and MRAM. The values were verified to

ensure the DES to host interface and the loading process was working correctly.

6.5.2 Interrupt Routine Testing The interrupt vectors checked in this test process

included the following types: Post Event Message, which is signaled whenever a null mes-

sage has been prepared for an output ar(: that is not receiving a real message; Get Event

Message, which is signaled whenever an event is ready to be processed; and Get Event

Nulls, which is used to signal that a null message was retrieved from the CAM and a null

message is ready for one of the output arcs.

The test bench processed interrupts using a loop construct. An assertion statement

was used within the loop construct to identify the interrupts. The code was traced during

every opcode and operand to determine the interrupt routine that was selected. The

interrupt register was also used to determine which of the interrupts was signaled by the

DES. All of the interrupt routines are designed in the same manner to reduce coding errors.

The only difference between the interrupt routines is the interrupt vector which selects the

interrupt handler.

The interrupt register is the best source to review for proper interrupt signaling. The

only time this register is active is when the DES has data to pass to the CPU. Testing

of this component was performed by examining the interrupt vector triggered onto the

system data bus during the Initialize Simulation routine. Both steps are recorded in the

following data trace.

142987 NS

M: ACTIVE /DESSYSTEW/DESMAP/U6/INTR (value - '1')

X4: ACTIVE /DESSYSTEI4/DES.NAP/U6/INTRVECTOR (value - X"FF")

X2: ACTIVE /DES.SYSTEM/DES.NAP/U6/LOCALDATA (value - X"FF")

143060 NS

MI: ACTIVE /DESSYSTEX/DES.KAP/U6/INTA (value a sit)

K2: ACTIVE /DES.SYSTEM/DESMAP/U6/LOCALDATA (value X I"??")

143062 NS

68

//

M3: ACTIVE /DESSYSTEM/DESNMAP/U6/VECTOR.TO_386 (value " X"FF")

The signal labeled M4 is the interrupt vector used to signal a Post Event interrupt.

"FF" is the value of the interrupt that is processed during this interrupt. Signal M3 shows

the data appearing on the interrupt outputs 2 ns after the INTA signal is activated. This

interrupt validates the DES interrunt process. The entire system bus was examined to

ensure the system data bus wasn't floating to a high state which would signal the same

interrupt. The remaining bits of the system bus were low.

6.5.3 Error Routine Testing The error vectors examined in this process included

the following types: Should Be Operand, which is called whenever an opcode is received

by any routine except the Fetch/Decode routine; No Input/Output Arcs, which is executed

whenever an LP has either no input arcs or no output arcs; Restart Load, which is triggered

whenever the initial loading process does not complete in the correct manner; CAM Full,

which is selected during the Post Message opcode if the CAM-MATCH flag is inactive during

a CAM write signaling there is not a free CAM word for writing; and CAM Error, which

is triggered during the Get Event opcode if an event is ready for the specified LP, but the

CAM signals that there is not an event in the queue for the LP.

The test bench also processed the errors in a loop construct using an assertion state-

ment to identify when an error occurred. The microinstructions were traced to ensure the

appropriate error routines were executed during each test. The error routines are also de-

signed exactly alike to reduce coding problems. Again, the vectors are the only differences

between the error routines. Detailed error tests were also performed late in this research

effort resulting in a limited availability of testing output, but all of the error vectors were

visually checked to ensure functionality.

6.5.4 Event Execution Testing Event execution testing was performed in a modular

fashion. Since the opcodes were translated from a run of a Intel Hypercube simulation, the

test vectors used for the microcode tests will provide a true test of the hardware. These

opcodes do not guarantee complete functionality, but provide a high level of confidence in

69

the operational integrity of the system. The event execution testing process includes the

parallel I/O device, status register, and microroutine tests.

6.5.4.1 Parallel I/0 Component Testing In this section, test results for this

device are presented showing data on the input and output ports of this device. The proper

port values were examined for accuracy to ensure proper bidirectional operation. The signal

generator device is responsible for decoding test bench signals into the appropriate chip

selects for the parallel I/O device and the status register.

The following data trace shows the CPU loading the parallel I/O device with an op-

code or operand. The data is loaded into the parallel I/O device whenever the MODE-386

signal is active. This first trace segment shows a data value of "C2167029" being loaded

into the parallel I/O device. Validation of this fact is seen in the next trace segment that

shows the same data packet on the local data bus.

945 NS
143: ACTIVE /DESSYSTEM/DESWAP/U3/NODE_386 (value = '1')
NI: ACTIVE /DESSYSTEM/DESI1AP/U3/STROBE_386 (value z '0')

947 NS
M2: ACTIVE /DES.SYSTEM/DESWAP/U3/MODEDES (value a ''0)

M: ACTIVE /DESSYSTEM/DESMAP/U3/STROBE.DES (value = '0')
MS: ACTIVE /DESSYSTEM/DESMAP/U3/LOCALDATA (value = X"????????")

960 NS
M6: ACTIVE /DESSYSTEM/DES.-AP/U3/SYSTEM.DATA (value a X"C2167029")

The following data trace shows the data propagated through the parallel I/O device

to the local data bus. Data is triggered onto the local data bus whenever the STROBE-DES

signal is active. Since the data on the local and system data buses match, the parallel I/O

DES receive portion of the device seems to be wor!ing.

1107 NS
142: ACTIVE /DES.SYSTEM/DES.MAP/U3/MODE.DES (value a '0')

M: ACTIVE /DES.SYSTEM/D,S..._AP/U3/STROBEDES (value - '11)
MS: ACTIVE /DESSYSTEM/DES_.AP/U3/LOCAL.DATA (value = X"????????")

1109 NS
1S: ACTIVE /DESSYSTEM/DESMAP/U3/LOCAL.DATA (value , X"C2167029")

70

I,,

Next, the DES transmit process was tested to ensure the parallel I/O device works

properly when passing data from the DES to the host processor. The data trace below

shows the data being latched into the parallel I/O device by the MODE-DES active signal.

The data packet "01090401" is latched into the parallel I/O device during this test.

142905 NS
X3: ACTIVE /DES.SYSTEM/DES.MAP/U3/MODE.386 (value = '0')
M1: ACTIVE /DESSYSTEM/DESMAP/U3/STROBE_386 (value = '0')

142907 NS
1M2: ACTIVE /DES.SYSTEM/DESMAP/U3/MODEDES (value = '1')

M: ACTIVE /DESSYSTEM/DESMAP/U3/STROBEDES (value = '0')

MS: ACTIVE /DESSYSTEM/DESMAP/U3/LOCALDATA (value = X"01090401")

To ensure the data path works correctly, the data must appear on the system data

bus the next time the STROBE-386 signal is active. The data trace that follows shows the

output from the parallel I/O device onto the system data bus. Since the data on the local

and system data buses match, the PARIO output portion of the device performs correctly.

143145 NS
N43: ACTIVE /DESSYSTEM/DESMAP/U3/MODE.386 (value * '0')
Ml: ACTIVE /DES.SYSTEM/DES.NAP/U3/STROBE_386 (value = '1')

143147 NS
.M2: ACTIVE /DESSYSTEM/DES.MAP/U3/MODEDES (value = '0')
X4: ACTIVE /DES.SYSTEM/DES.MAP/U3/STROBE.DES (value • '0')

1M6: ACTIVE /DESSYSTEM/DES.MAP/U3/SYSTEMDATA (value * X"01090401")
M5: ACTIVE /DESSYSTEM/DESMAP/U3/LOCALDATA (value = X"???????")

6.5.4.2 Status Register Component Testing The Status register can be up-

dated by either the DES or the CPU. The configuration of the status register is shown in

Figure 4. The operation of the Status register is described in detail in Section 4.3.2. The

test results gathered show the CPU and DES updating the status word at various times. >\'
The DES and CPU can also update the status word at the same time. If both processors

attempt to update the same bit in the status register, the result is a double toggle which

results in no change to the status register. The value of the STATUS.to-DES value was

used because the status register contents are directly connected to those signals. Whenever

71

K .2
-< ... ----- .~-: -"'-"K\

the CPU is updating the status word, the WRITE-386 signal and the appropriate bits to

be updated are active. Whenever the DES is updating the status word, the WRITE-DES

signal and the appropriate bits to be updated are active.

The writing and reading of the status word by the CPU was tested first. The following

data trace shows the contents of the status word before and after the update is executed.

The STATUS.TO-386 port is connected to the lowest four bits of the system data bus.

From the data trace, the CPU requested that the lowest order bit be toggled to a low value

and the expected results are found. The WRITE-386 signal selects the write function for

the host system. Signal M10 requests that the WRITE-LOCAL bit be toggled because the

host has just completed reading a data packet from the parallel I/O device.

150360 NS S

M9: ACTIVE /DES.SYSTEM/DES.MAP/U1/STATUS.TO.DES (value = X"9")
150385 NS
M7: ACTIVE /DESSYSTEM/DESMAP/U1/READ_386 (value 1 '01)
M8: ACTIVE /DESSYSTEM/DES.MAP/U1/WRITE.386 (value = '1')

150400 NS
M10: ACTIVE /DESSYSTEM/DESMAP/Ul/STATUS.TO_386 (value = X"1")

M9: ACTIVE /DES.SYSTEM/DES.MAP/Ul/STATUS.TO.DES (value a X"8")

Next, the read function was tested and the following data trace shows the status

transmitted to the CPU when the READ.386 signal is active. The STATUS-TO-386

vector should be the same as the STATUSTO.DES vewior. The vectors mentioned are

equal, therefore, the read function of the status register is working correctly on the host
side.

150400 NS
M9: ACTIVE /DES.SYSTEM/DES.MAP/Ul/STATUSTO.DES (value * X"8")

150425 NS
M7: ACTIVE /DESSYSTEM/DESMAP/U1/READ_386 (value a '1')
M8: ACTIVE /DESSYSTEM/DESMAP/Ul/WRITE_386 (value w ''0)

150427 NS
P6: ACTIVE /DES.SYSTEM/DES.MAP/U1/WRITE.DES (value a ''0)
MIP: ACTIVE /DESSYSTEM/DES.MAP/U1/READYBIT (value = '0')
M2: ACTIVE /DES.SYSTEM/DESMAP/U1/ERRORBIT (value - '0')

72

F''.,

- i

H4: ACTIVE /DESSYSTEM/DESMAP/U1/WRITELOCAL (value 1 '0')
M3: ACTIVE /DESSYSTEM/DES.MAP/UI/READLOCAL (value • '0')

150440 NS
M10: ACTIVE /DESSYSTEM/DESMAP/U1/STATUS.TO_386 (value a X"8")

Only the write function on the DES side was formally tested because the status

register is directly connected to the MSL in the DES coprocessor and proper functionality

was seen in all of the traces. Whenever the WRITE.DES signal is active, the DES is

performing a write to the status register. The contents of the status word before and after

are listed below. Each of the status bits was implemented in the same fashion, therefore,

the other bits do not require individual tests. Figure 4 confirms that the WRITE.LOCAL

bit is the lowest-order bit and thus signal M9 shows the lowest-order bit of the status word

being toggled. This example shows that the DES status word write function is operating

correctly.

150040 NS
149: ACTIVE /DES.SYSTEM/DESMAP/UI/STATUS.TO.DES (value * X"0")

150187 NS
M6: ACTIVE /DES.SYSTEM/DESMAP/U1/WRITEDES (value a '1')
M14: ACTIVE /DESSYSTEM/DESMAP/U1/READYBIT (value = '0')
M2: ACTIVE /DES.SYSTEM/DESMAP/U1/EROR.BIT (value a '0')
144: ACTIVE /DES.SYSTEM/DES.-AP/U1/WRITELOCAL (value 1 '1')
M3: ACTIVE /DES.SYSTEM/DES.MAP/U1/READ.LOCAL (value • '0')

150200 NS /
149: ACTIVE /DESSYSTEM/DESMAP/UI/STATUSTO.DES (value = X"1")

6.5.-4.3 DES Microcode Testing The tests for the microcode routines were

performed using a modular technique. The routines were tested as they appear in the

following sections. All of the microcode routines are inlcuded in Appendix B. The four

sections include: Initialize Simulation, Post Message, Get Event, and Post Event. Figure 14

shows the configuration of the simulation to be executed during the testing process. The

input and output arcs in Figure 14 are mapped to the RAM partitions for the respective

LPs.

1. Initialize Simulation

73

/

Source Source Source
LPO LIi LP2

Wash Wash Wash Wash
LP3 LP4 LP5 LPS

Exit
LP7

Figure 14. Carwash Configuration

As mentioned in the examples in Chapter V, there are three components to be con-

cerned with when testing the microcode routines. The first component to be checked

was the DES RAM unit. The memory listing that follows shows the LPJDELAY,

SIM-TIME, I/O.ARCS, Input arcs, and output arcs as configured in Table 1. The

listing shows the specific information for LP1 and LP2. The partitions are labeled

below for clarification. The input and output arc information is contained in bits 25

down to 18 of the memory words. The node number is encoded in bits 25 down to

23 and the LP is encoded in bits 22 down to 18.

MEMNIBBLE(
165467 NS -

MI: 1CTIVE /DESSYSTEM/DE _MAP/U2/RAM.RW/XEM.NIBBLE (value -
(LP1's RAM Partition:
X"-00000004", X-1000000 " 030001". X"00000400", X"00000400",
XO0001000-", X"00001400-,
LP2's RAM Partition:
X"00000004", X"O0000000", X"00030002, X"00000800", X"O0001COO",
V00000800-0, X"00001400", V00001800",

74

- .• / •• . - • • -• -- -•x

The GPRs were checked next to ensure the status registers had the correct number

of input arcs reflected in their respective bit vectors. There should be a 0 in each

input arc bit position for every LP. The following data trace shows the GPR contents

after the initialize Simulation routine had completed execution. In this listing of the

GPRs, registers 33 and 34 contain the status registers for the specified LPs. The

status registers examined are labeled below for clarifica6,on. Since register 33 has a

single 0 in the lowest order bit (Hex E = "1110"), LP1 must have only one input

arc. Figure 14 shows the configuration of the CARWASH simulation which confirms

this fact. Register 34 corresponds to LP2 and has a 0 in the two lowest order bits.

From Figure 14 register 34 is also correct. Theses examples provide a high-level of

confidence in the status register routines that sets up the LP status registers.

16S410 NS
M: ACTIVE /DES-.SYSTEM/DES-MAPIUO/U22/GPR-REGISTERS (value=

(X"O00000000". X-"00000017%, X"10000002E-", X"00000045"1, X"0000005C".,
X-100000073", X-10000008A", X-1000000A1", X "000000138", X"OOOOOOCF",
X-1000000E6"-, X"OOOOOOFD-, X-1000001 14-1, X"0000012B", X"000001421-,
X-10000015911, P"00000170%, X-"00000187%, X0000019E", P"000003B5%
X-1081CO0000" X-100080000%, X"0000000011, P"00000001%, P00000000%,
X1100000036%, X--OOOOO3FC--,
LP1's Status Register: X"OOOOO3FE",
LP2's Status Register: X"OOOOO3FC", .o~~Q~
X--00000000", X'-00Q000000II, r-~00000000% I,00000 -0000"

-ix t 00000000%, r-00000000%, r00000000%, x"0000000O.", x.00000000%,
* X1.00000000%' rt-00000000%I r00000000%II Xi00000000%I Xt-00000000-1,

X"00000000", P"00000000", P"00000000". P"00000001% X"IFFFFFFFF"-,
X"OOO03FCOO-", X-104080008%, X110408000811, P"00000000%, X"3FCOOOO",
X"OOOOO3FF", P"00000000% X-Z"0000000011, X--00000001-1))

The last component tested in this process is the CAM. The CAM array is constructed

within VIDL using the generate command. This command does not allow listing of

the contents of the memory, therefore, the CAM could not be listed for documentation

purposes. The word select lines were observed during several reads and writes to

ensure the events were placed in the correct locations. The following listing shows

an input for LPO being reserved in the first word of the CAM. The bit string has a

75

II

1 located in the highest order bit which corresponds to the reservation of the first

input arc.

144190 NS
M2: ACTIVE /DES.SYSTEM/DES.NAP/TAG.ADDRESS (value * X"80000000")

2. Post Message

The RAM unit remains unchanged during the execution of the Post Message rou-

tine; therefore, the LP status registers and CAM information were examined during

testing. First, the LP status registers are listed after an event is written. The in-

formation in the Initialize Simulation listings can serve as the state of the hardware

prior to the execution of the Post Message opcode. The data extraction below shows

the LP status register for LP1 after receiving an event on its only input arc. The
status register now contains a 1 in every input arc bit position signifying the presence

of an event on every input arc. The status register examined is labeled below for

clarification.

228690 NS
M: ACTIVE /DES.SYSTEM/DES.YAP/UO/U22/GPR.REGISTERS (value c

(X"00000000", "00000017" X"0000002E" X"00000045%, P"0000005C",
X"100000073 X"0000008A", X"OOOOOOAI" X"000000B8", I"OOOOOOCF",
X"POWWOO E6" X"OOOOOOFD", "00000114" X"0000012B", X"00000142%,
X"00000159", X"00000170" P"00000187", X"0000019E", X"006003B5",
X"00000001" X"00000002" 0X"0000400" X"OOOOOOOA", X"04040000",
X"00000400", X"00000000" "O3FCO000", X"00000003", X"00000004",
X"0000000" X"OOOOOO1A", X"OOOOO3FC",
LPI's Status Register: X"OOOOO3FF",
X"OOOOO3FC", X"OOOOO3FF", X"OOOOO3FC", X"OOOOO3FC", "OOOOO3FE",
X"000003FO", X"O00000000" X"O00000000", X"00000000" P"00000000",
x"O00000000%, X"00000000%, X"00000000.", X"00000000-0, xr00000000,
X"00000000", X"00000000", X"O00000000", r"00000000" r"00000001",
X"FFFFFFFF", X"OOO3FCOO", X"08040402" P"00000000-, X"O00000000",
X"O3FCOOOO"o X"OOOOO3FF", X"00000000", X"00000000", X"QOOOOO3FF"I))

To ensure the proper data is being written into the CAM, the CAM-Write assertion,

the local data bus, and the tag address were examined. The data trace that follows

76

MEN..-

shows the assertion and states of each signal of concern. All of these values were

decomposed and validated. Each CAM word is directly mapped to a bit of the

TAGADDRESS bit vector where the most-significant bit is mapped to the first word

in the CAM. A "1" in any bit represents a match of the CAM word during a search.

The TAG-ADDRESS in the data trace represents the selection of word 6 in the CAM.

The sixth word of the CAM was reserved for input arc LPO of LP3. Figure 10 shows

the configuration of the CAM bits. The "C" in the LOCALDATA.BUS bit vector

corresponds to the lowest order 4 bits of the TO LP field. If the string is converted

to decimal, the TO LP = 3. The lowest order nibble corresponds to the time tag for

the event.

206827 NS
Assertion WARNING at 206827 NS in design unit BEHAVE from process
/DES.SYSTEM/DES.MAP/US/CAM.DRIVER/DRIVER:

"CAM EXTERED"
M3: ACTIVE /DESSYSTEM/DESMAP/LOCAL.DATA.BUS (value = X"CC000005")

206828 NS
Assertion WARNING at 206828 NS in design unit BEHAVE from process
/DES.SYSTEM/DES.NAP/US/CAM.DRIVER/DRIVER:

"CAM WRITE"
206910 NS

M2: ACTIVE /DES.SYSTEM/DESMAP/TAGADDRESS (value a X"04000000")

This data extraction validates CAM functionality using the Post Message routine.

These test provides a sufficiently high-level of confidence in the interfacing of the

hardware and the Post Message routine.

3. Get Event

This routine was by far the most complex of the four filters implemented in microcode.

Basically, every component must work properly to obtain accurate results for the

Get Event routine. A Get Event for LP1 was chosen to show a flow of events for

testing validation; therefore, this Get Event opcode was designated for LP1. The first

component to be checked during a Get Event opcode is the LP status register. The

data trace from the Post Message routine shows the status register for LP1 extracted

77

./" .. • ;_:-p-.---

and labeled for clarification. The register contains a 1 for every input arc bit which

indicates that an event is ready for processing. LP1 has multiple inputs on the input

arc; therefore, the status register does not change value. The data trace below shows

that LP1's status register did not change value.

267130 NS
K: ACTIVE /DES.SYSTEM/DESMAP/UO/U22/GPR.REGISTERS (value :

(X"O00000000", X"00000017", X"0000002E", X"00000045", "O000005C",
X"00000073", X"0000008A", X"OOOOOOA1", X"000000B8", X"OOOOOOCF",
X"00000E6", X"OOOOOOFD", X"00000114", X"0000012B", X"00000142",
X"00000159" X"00000170", X"00000187", X"0000019E", X"OOOOOIB5",
X"00000002", X"04040000". X"000003FF", X"00000004", X"04000000",
X"OOO3FFFF", X"00000006" X"00040000" X"O01COOOO", X"04040000",
X"00000001", X"O00000018" X"000003FF",
LP1's Status Register: X"000003FF",
X"OOOOO3FD" P"000003FF", X"000003FC", X"000003FC", X"OOOOO3FE".
X"000003FE", X"00000000". X"00000000", X"00000000", X"00000000",
X"O00000000", X"O00000000" X"O00000000", X"00000000"o X-"00000000",
X.,00000000" x"00000000" X-"00000000", X"O00000000", X"O00000001,
X"FFFFFFFF", X"0003FCO0" X"OC040000", X"OC040000", P"00000000"
X"03FCO000", X"OOOOO3FF", X"00000000", X"00000000", X"00000000"))

The CAM is the next component to be tested. The TAG-ADDRESS corresponds to the

CAM word selected. LP1 has two input arcs and LP1 has one input arc. The arcs

were reserved in order from LPO to LP7. The TAG-ADDRESS value below corresponds

to the third word in the CAM. Reviewing the CAM configuration, the value on the

local data bus below represents an event from LP1 to LP1 with a time tag of 0. This

word selected was a reserved word for LP1 and provides validation for the CAM find

minimum time tag function because 0 is the smallest time tag.

26631, US
M2: ACTIVE /DESSYSTEM/DESNAP/TAGADDRESS (value X"20000000")

266549 NS
X3: ACTIVE /DESSYSTEM/DESNAP/LOCALDATA.BUS (value a X"04040000")

Another Get Event opcode was sent to the DES for LP1 to test the RAM update

function because the first Get Event opcode fcr LP1 had a time tag of zero. The

78

data trace below shows the simulation time equal to five. LPI's RAM partition is

shown below to validate the simulation time change. The second vector represents

the simulation time which has been updated to five. This test validates the operation

of the Get Event routine with the RAM device. All of the data traces for the Get

Event opcode validate operation between the microcode and the hardware.

336307 NS
Ml: ACTIVE /DES.SYSTEM/DESMAP/U2/RAMRW/MEMNIBBLE (value *

LPI's RAM Partition: X"00000004", X"00000005", X"00030001",
XIO00000400-, X"00000400", X"00001000",
X"00001400")

4. Post Event

The Post Event routine was thoroughly tested by monitoring the local and system

bus for null messages. The count of operands that is contained in the lower order

10 bits of the null message and the time tag were examined for accuracy. The count

should equal "1" whenever the event is a null message. The following data trace

shows the null message retrieved from the DES and the associated count. From

Table 10, the first value of the local data bus shows opcode formatted for a source

and destination LP of one. The second vector represents the time tag which is zero

for this event. The time tag was validated by reviewing the trace from the test data

converted from the Intel Hypercube runs.

212749 NS
M3: ACTIVE /DES.SYSTEM/DES..MAP/LOCAL.DATABUS (value a X"10040401")

213349 NS
M3: ACTIVE /DES.SYSTEM/DES_., AP/LOCAL.DATABUS (value = X"O00000000")

6.6 ummary

Even though a high-level test bench was implemented to interface with the DES

coprocessor, the signals used were realistic signals that provide sufficient validation for

the design. The test vectors were extracted from actual runs on the Intel Hypercube and

79

the test results were extracted from many DES simulations. All of these factors together

validate the test process; therefore, the DES coprocessor works correctly and supports the

Chandy-Misra protocol with null messages.

80

VIL Results and Recommendations

7.1 Introduction

A structural VHDL description of a DES simulation accelerator coprocessor was im-

plemented to provide a proof of concept for simulation coprocessors. Taylor's requirements

analysis provided the target areas for communications overhead reduction [21]. The CAR-

WASH model was used to provide a general-purpose simulation for speedup determination.

The SPECTRUM testbed filters were the communications tasks targeted for enhancement.

This chapter details the results and recommendations of this research effort. The

calculation process used to obtain the speedup results are included in this chapter. An

example calculation is provided to validate the calculation process. Additional areas to

increase coprocessor performance are also outlined as part of the recommendations.

7.2 Calculation Process

Simulation speedup was calculated to quantify the results of this thesis effort. With-

out realistic event processing, the potentiai for speedup would be overstated; therefore, spin

loops of 0, 1,000, and 100,000 were used to model an event being processed but cannot

relate to true event processing times. The amount of speedup is application-dependent. If

the time required for event processing is low, then the potential for speedup will be high.

If event processing takes a considerable portion of the host's processing time, then the po-

tential speedup decreases rapidly. The calculation process for determining overall system

speedup followed the steps in Table 13. To ensure true speedup is stated, the average times

for each routine are compared to the average hardware results. The average times do not

predict peak performance speedup potential, but do provide reasonable speedup ratios.

7.2.1 Hypercube Filter Averages Simulation data was gathered from many simula-

tion runs on the Intel Hypercube to provide suffcient filter information to average filter

processing times. The simulation test data gathered from the Intel Hypercube provides ac-

curate results for the four SPECTRUM filters. Figure 15 shows an example data segment

extracted from a run with the spin loop set to zero.

81

//

/:

Table 13. Speedup Procedures

Step Speedup Procedure
1 Calculate Hypercube Filter Averages
2 Calculate DES Filter Averages
3 Calculate System Overhead
4 Final Speedup Calculation

init start time = 9379.883 749 msecs
init stop time = 9380.632 m
get start time = 9381.402
mess start time = 9382.057 .767 rses
mess stop time = 9382.824 j .767 msecs
mess start time = 9383.583 1..734 msecs
mess stop time = 9384.317 J
get stop time = 9394.831
post start time = 9399.933 1
post stop time = 9401.721 1.788 rsets
get start time = 9402.088 }.659 msecs
get stop time = 9402.747
post start time = 9412.4841
post stop time = 9414.664 2. 18 msecs

Figure 15. Hypercube Simulation Data

82

/

Table 14. Cube Filter Times

Filter J (msec) Min (msec) Max (msec)

Init Sir .730 .652 .754
Post Msg .808 .063 3.937

Get Event 9.405 .058 33.386
Get Modified 6.460 .058 30.118
Post Event .708 .061 3.960

Table 15. DES Microcode Routine Test Data Processing Times

Fite 14mzsec) Min (zsec) I ax(mEcJj

lait Sim .00741 i .00,% .00900
Post Msg .00272f .00216 .00312
Get Event .00410 .00200 .00620

.Post Event .00401 .00392 .00428

Table 14 provides the average processing times and the percentage of overall process-

ing time per filter for the Intel Hypercube iPSC/2. The Get Modified input was calc,2.ated

by subtracting all of the filter calls made while an LP was blocking. The filter call should

only be counted once to provide an accurate description. The va;ue, 11.928 msecs, calcu-

lated for the first Get Event call in Figure 15 shows an example of filter calls being made

during the Get Event filter call.

7.2.2 DES Filter Averages The simulation data was converted into opcodes and

operands that could be understood by the DES. Assertion statements were inserted into

the VHDL code to signal the start of each opcode. Simulation runs on the DES were

conducted using the opcodes and operands to obtain sufficient data to calculate filter

averages using the DES coprocessor. The processing times for the respective DES routines

are included in Table 15.

7.2.3 System Overhead Calkulation The system overhead provides the last piece

of information required prior to calculating the total simulation speedup. The system

83

Hyprrcube I DES Mean Trimes
Wall Time = 19.795
Init Total Time - .749 Init Mean - .749 .00741
Init Calls - .
Get Total Time - 12.587
Get Calls - 2 Get Event Mean - 6.294 1 .00410
Post Total Time - 3.968 Post Event Mean 1.984 / .00401
Post Calls = 2
Post Message Total Time - 1.5011 Post Message Mean .7505 .00272
Posrt MessagePCalls = 2

Wall Time - Total Filter Time - System Overhead

19.795 - 18.805 - .99 msec

Figure 16. Hypercube Total Times

overhead will be approximately the same with or without the DES coprocessor in use.

The overhead had to be obtained for each of the three spin loops used to model event
i

processing. Equation 1 was used to compute the system overhead for each of the spin

loops.

System Overhead = simulation wall time - filter processing time (1)

An example calculation of system overhead is shown in Figure 16. To provide more

realistic filter processing percentages, the data required for this step was collected without

the print statements in the code. The overhead calculated for each of the spin loops is

included in Table 16.

Filter speedup was also calculated to ensure the microcode implementation is an

approach worthy of consideration. The results show that the microcode implementation

appears to be reasonable. Equation 2 was used to compute the filter speedup and the

results are included in Table 17.

84

"k;
*, - * ,... I-l- .i : 2 ,; - o •

Table 16. System Overhead

Spin loop Overhead (msec)

0 (.295- .2908) * .00472
1,000 (.308- .280588) a .02741

100,000 (4.038- .904512) u 3.1335

Table 17. Coprocessor Speedup Ratios

Filter Filter Speedup

Init Sim 98.5
Post Msg 297.1
Get Event 1575.6
Post Event 176.6

FilterSpeedup = (CUBE.TIMES)/(DES.TIMES) (2)

7.2.4 Overall Speedup The CARWASH simulation was executed with spin loops to

emulate the event processing times. This information provides a speedup range depending

on the application. Table 18 provides a detailed summary of the DES coprocessor per-

centage of processing dedicated to filter execution and the speedup obtained for each spin

loop. The final speedup results were calculated by finding the total simulation time for

the cube divided by the total time for the DES coprocessor. Equation 3 shows the formula

used to calculate speedup.

Speedup = (Simulation Timne)/((E (Filter z Filter Calls)) + Overhead) (3)

85

Table 18. Overall Speedup using Spin Loops

Spin Loop Filter Time as % of Total Processing Speedup

10 98.4 60.32
I1,000 91.1 11.16
100,000 22.4 1.29

7.3 Recommendations

Several areas concerning the CAM, microcode, and DES coprocessor in general were

.revealed during this research effort. Some were explored and added to the general-purpose

hardware coprocessor design. The following subsections review the ar eas to be further

examined to potentially provide greater speedup.

7.3.1 CAM Modifications The CAM used within the DES architecture has been

modified to provide a maxima and minima for a subset of CAM words. This modification

will provide additional speedup for the Get Event routine. This modification eliminates

the hardware implementation problems discussed in Chapter WY. The problem o, -curs when

many words attempt to raise a line high and only one drives the line low. This pull-down

capability is not realistic and has been resolved in the new CAM. Only a few modifications

to the front-end drive; will be required to provide this capability.

7.3.2 Microcode Enhancements in the microcode are always possible. A more de-

tailed look at the microcode implementation should be approached to ensure maximum

performance. RAM usage as well as microcode efficiency should be researched to provide

maximum speedup.

The present architecture is a decimal approach to instruction translation. All of the

control store addresses, instructions, registers, and JUMP addresses are read from a file in

a decimal format and then translated into a binary format by the test bench. An assembler

should be designed to translate the microcode instructions into the binary format required

by the DES. The program should be a multi-pass assembler allowing the use of labels for

86

JUMP addresses. The "nstruction addresses should automatically be generated to reduce

user overhead.

7.3.3 Behavioral Components Approximately 90 percent of the components have

been converted to a gate-level structural VHDL format. The entire design should be con-

verted and tested thoroughly. MAGIC layouts have been completed for SRAM and CAM

devices within AFIT. Both of these devices should be tested thoroughly for compatibility.

Prior to a MAGIC layout being attempted, all of the VHDL structural components should

be at the gate level.

7.3.4 Timing Analysis A critical timing analysis should be accomplished to obtail.

peak performance at all times. Each phase in the four-phase clock is presently set to 10

ns. The critical units should be obtained to enable minimal phase widths. If each phase

can be reduced, the potential for additional speedup can be increased. Once an HSP:CE

timing analysis has been conducted on each component the time delays s6ould be updated

in the structural descriptions.

7.3.5 Paradigm Support An analysis of other paradigms should be conducted to

ensure the DES coprocessor is general purpose enough to support various algorithms.

Variations of the Chandy-Misra protocol should be decomposed to ensure DES usability.

The optimistic Time-Warp protocol also seems to be natural selection to be coded to work

on the DES.

7.3.6 Hardware Implementation The DES coprocessor should be implemented on

the Intel Hypercube iPSC/2. The coprocessor would require a significant redesign to be

implemented on the iPSC/1. The DES provides a 32-bit bus for opcode and operand trans-

fer. The iPSC/1 only provides a 16-bit bus. The interfacing issues should be conrronted

early in the next thesis cycle.

87

7.4 Summary

The DES coprocessor wes designed with general-purpose simulation support as the

primary des-ýn objective. The microcode was written to support the Chandy-Misra pro-

•.ocol with null messages. A test bench was then designed to effectively test the interrupt

and routines, as well as opcode and operand execution.

The speedup varies from 60.32 to 1.29 times when using the DES coprocessor. These

results are more promising for fine-grained (spin loop = 0) than coarse-grzin (spin loop

= 100,000) applications. In fine-grained applications, the DES coprocessor is promising

because the synchronization overhead will no longer be a bottleneck. In coarse-grained

J applications, the DES coprocessor is not as promising because the event processing will be

the bottleneck.

88

I-

Appendix A. DES SPECTRUM Algorithms

The following SPECTRUM algorithms are followed to directly support the Chandy-

Misra paradigm. The algorithms implement the corresponding flihers used in SPECTRUM.

The code drives the control driven architecture.

A.1 Read-Only Control Store Procedure

This algorithm is designed to load the control store and
mapping RAM. System address bit two is a zero if the data is
an opcode and a one if the data is an operand. An operand
for this routine is composed of microinstructions for the
con4-rol store or mapped addresses for the mapping RAM.

1. Initialize CAM
2. Signal ready to the host
3. When OPCODE, check for a 0

- if equal 0 goto step 4
- else goto step 3

4. Wait for data present
- if present then goto 5
- else LOOP (GOTO step 4)

5. Check to see if it is an OPCODE
- if OPCODE then goto step 8
- else continue (MUST BE AN OPERAND)

6. Load data into the control store or mapping RAM
7. JUMP to step 4
8. Check OPCODE a 0

- if equal 0 then goto STARTOF.FETCH.DECODE
- else SIGNAL.ERROR(RELOADDATA) and goto step 3

A.2 Fetch/Decode Procedure

This algorithm details the operation of the fetch/decode routine.
This routine loads the common registers for future use and calls
the appropriate function. Register 63 is loaded with the count
of operands to follow the opcode, register 27 is loaded with the
TOLP information, and register 57 (accumulator) is loaded with

89

- - -- V .. .=... -"*--- /

the entire opcode for use when selecting the base pointers or
status registers for the specified LP. This operation will be
explained in the actual microcode. Register 56 is the instruction
register and also contains the entire opcode. Register 56 is
used to load the other registers.

1. Wait for data present
- if no data present then LOOP (goto step 1)

2. Check for OPCODE
- if OPCODE then goto stop 3
- else

-- SIGNAL.ERROR(BADOPCODE) using Reg22
data a 0000000000000000000000111111111

-- remove data from the PARIO
-- reset WRITEREMOTE/READ.LOCAL status bit
-- goto step 1

3. -oad data into IR
4. Load count into r~gister 63
5. Load TO.LP into register 27
6. Load IR into the ACCumulator
7. JUMP to IR address

A.$ Initialize Simulation Pr cedures

In general, this algorithm setup the LP specific information
in RAM, setup the status registers for the specified LP,
reserve words in the CAM fcr every input arc, and output a null
message to 5very output arc. Register 23 will be loaded with
the LP delay, register 62 will be loaded with the simulation
time, and register 21 will be loaded with the number of I/O arcs.
These registers are throughout the intialize simulation routine.

1. Wait for data present
.. if no data present then LOOP (goto 1)

2. Check for OPCODE
-- if OPCODE goto 27 ***UNLOAD PARIO AND RESTART***
-- else start load of simulation data

3. Load LP.DELAY into register 23
4. Reset READ.LOCAL/WRITE_..RZOTE status bit
5. Add -1 to count (Reg63) and check a 0

-- if count * 0 then Soto 25 ***ERROR***

90

- .

"-'--_ . • •... • - -• . -- - - . ; • ~ t ... • ,

-- SIGNAL ERROR(BAD-.INIT) goto FETCH-.DECODE
--data = 000000000000000000000000l1111111

6. Wait for data present
-- if no data present then LOOP (goto 6)

7. Check for OPCODE
-- if OPCODE gcto 27 ***UNLOAD PARIO AND RESTART***

8. Load S7M..TIME into register 62
9. Reset READJ.OCAL/WRITE..REMOTE status bit
10. Add -1 to count (Reg63) and check a 0

-- if count a 0 then goto 25 ***ERROR***
--SIGNAL E.RROR(BAD..INIT) goto FETCH-.DECODE
--data a OOOOCOOOOOOOOOOOOOOOO00011111111

11. Wait for data present
-- if no data prosent then LOOP (goto 11)

12. Check for OPCODE
-- if OPCODE goto 27 ***UNLOAD PARIO AND RESTART****

13. Load *..ARCS..IN/OUT into register 21
14. Reset READ..LOCAL/WRtITE-.REMOTE status bit
15 Add -1 to count (Reg63) and check a 0

-- if count a 0 then goto 25 ***ERROR***
-- SIGNAL ERROR(BAD-.INIT) goto FETCH-.DECODE
-- data a 00000000000000000000000011111111

16. Load #..ARCS..IN in register 29
17. Store base pointer in register 31
18. Store LP..DELAY, SIM-.TIME, and #-.ARCS in RAM
19. Setup ARCS..STATUS-.REGISTER
20. Write ARCS..IN directly to RAM
21. Write ARCS-.OUT directly to RAM
22. Check count a 0

-- if count /a 0 SIGNAL..ERRORC1NIT..DONE) goto 23
-- data a 00000000000000000000000001111111

23. Save one word in partitioned CA11 for each INPUT-ARC
24. JUMP to FETCH-.DECODE
25. SIGNAL..ERROR(BAD..INIT)
26. JUMP to 24
27. Unload PARIO
28. Rebet READ-.LOCAL/WVtITF.-REMOTE
29. JUMP to I

A-4 Post Message Procedures

91

In general, this algorithm loads the event into the CAM and
adjacent RAM, and updates the status register for the specified
LP. Register 26 is used to store the time tag and register 30
is used to store the memory poi.-ter.

1. Wait for data present
- if no data present then LOOP (goto 1)

2. Load TIME.TAG in register 26
3. Add -1 to count and check a 0

- if count - 0 then goto step 10 ***NULL MESSAGE LOAD***
4. Wait for data present

- if no data present then LOOP (goto 4)
5. Load MEMPTR in register 30
6. Write to partitioned CAM if free;
7. Check CAMFULL status

- if FULL then SIGNALINTR(DATA);
-- data a 01111ill

8. Update ARCS.INSTATUS register
9. JUMP to Fetch/Decode
10. Load register 30 with all O's
11. JUMP to step 6

A.5 Get Event Procedures

In general, this algorithm checks to see if an event is ready,
retrieves the event, sends it to the host processor, and updates
the status register for the specified LP. If a null message is
retrieved, nulls are sent to all output arcs a the process starts
over. In order to support the Chandy-Misra paradigm, nulls have
to be sent to all output arcs when a null is retrieved.

1. Check to see if event ready
2. Find minima for specified LP

- this word is the next event
3. Retrieve MEM.PTR
4. Update SIM.TIME for specified LP
5. Check for NULL

- if NULL goto 10
6. Reformat CAM word for transfer
7. Output to CUBE
8. Update LP STATUS register

92

_ ., - . -,C7

- check CAM for another EVENT for specified ARC
- update accordingly

9. JUMP to FETCH/DECODE
10. Send NULL messages to all OUTPUT arcs
11. Update LP STATUS register

- check CAM for another EVENT for specified ARC
- update accordingly

12. Output NULL messages to all output arcs
13. JUMP to I

A.6 Post Event Procedures

This algorithm sends null messages to all output arcs other
than the arc specified in the opcode.

1. Store ARC info from message in a register
2. Retrieve RAM ptr for specified TO.LP
3. Obtain number of Input Arcs
4. Obtain number of Output Arcs
5. Advance pointer to fii:st Output Arc
6. Read an Output Arc
7. If equals Arc from messaga

- then gotc- step 10
8. Format Output message
9. Interrupt CUBE and send message

10. Advance PTR
11. Add -1 to #.OUT.ARCS
12. Check !or equal zero

- if equal zero then JUMP to FETCH/DECODE

13. JUMP to step 6

93

4.I

Appendix B. DES Microcode Routines

The following microcode was implemented according to the algorithms in Appendix A.

The available commands are listed in Appendix C.

B.1 Read-Only Microcode

This section of code is required to load the control store and the mapping ram

whenever the DES is reset.

** Lines 0 - 3 are house cleaning instructions. These
** commands prepare the CAM and DES for processing.

0. JUAP to 1;

1. CAM.INIT;

- this instruction initializes the CAM for use

2. If not (CAM-COMPLETE) goto 2

- loop until initialization complete

3. SIGNAL.READY;

- set status to REDDY

** Lines 4 - 9 are used to read the opcoei and check to see
** if it equals zero. If the opcode equals zero, then
** initialization can begin. Else the DES will wait for
** the next opcode.

'\ - 94

4. If not (OPCODE and READ-LOCAL) goto 4

- wait for data present
an opcode is expected to start the load

5. Input.Data;

6. Reg56 :- MBR;

7. If ZERO goto 10

8. ReadLocal.Toggle;

- toggle read-local bit of the status register

9. JUMP to 4;

** Liues 10 - 15 read microinstructions into the control
** store. This code loops until an opcode is encountered.

10. BFGIN.LOAD;

- change control store state to load

11. If not (READ.LOCAL) goto 11

12. If OPCODE goto 16

13. Input.Data;

14. Read.Local.Toggle;

15. JUMP to 11;

** Lines 16 - 19 are required to read the opcode, check to
4* see if it equals zero, and jump accordingly. If the
** opcode equals zero then the loading has completed in a
** correct manner. If the opcode does not equal zero, then

95

** the load I be restarted.

16. Input.Data;

17. ReadLocal.Toggle;

18. RegS6 := MBR;

- place contents of MBR in register 56

19. If ZERO goto 23

**

** Lines 20 - 22 are required to signal an error and jump
** to the address 4 to restart the initial load.

.0. HBR : Reg6O;

21. SIGNAL.ERROR;

- toggle the error bit and write.local bit in tha
status register

22. JUMP to 4;

* Lines 23 and 24 are used to end the successful load and
** jump to the fetch/decode routine.

23. ID.-LOAD;

24. JUMP to 32;

96

B.2 Fetch/Decode Microcode

This routine is designed to load all common registers and call the correct routine.

The TOLP, COUNT, accumulator, and IR are all loaded with the appropriate data for

processing.

** Lines 32 and 33 wait for data and then ensures it is an
** opcode before continuing.

32. If not (READ.LOCAL) then goto 32

- Wait for data

33. If OPCODE then goto 41

- Check for OPCODE

**

** Lines 34 - 40 compose a routine that is called whenever
Se an operand is read when an opcode should have been read.
** The error vector a "0111111111" for this type of error.
**

34. Reg22 :- BAND(Reg22, 0);

36. Reg22 :- BOR(Reg22, RegS5);

36. Reg22 :w RSHIFTS(Reg22);

37. Reg22 :a RSHIFT8(Rog22);

38. Output.Data;

39. SIGNAL-ERROR;

40. JUMP to 32

97

** Lines 41 - 51 are reo'iired to load the count in reg63,
** TOLP info in reg27, opcode in reg56 (IR), and reg57.

** Register 57 is the accumulator. Masks :24 used to
** ensure only the desired data is loaded in the target
** register.
**

41. Reg63 : BAND(Reg63, RegS2);

42. Reg27 :a BAhD(Reg27. Reg52);

43. RogS7 := LS,1IFT(BAND(Reg57, R2.'NUX(ACC, 0)));

44. Reg63 :a AUR(Reg63, ReSSO);

45. Reg27 := BOR(Reg27, RegS9);

46. Input.Data;

47. RegS6 := MBR;

48. Reg63 :a BAND(Reg63, RegS6);

49. Reg27 := BAND(Reg27, Reg56);

50. RegS7 :a BOR(RegS7, RegS6);

51. Read.LocalToggle;

**

** Lines 52 and 53 are required to signal to the node that
** the DES is ready and then to jump to the code specified
** in the mapping ram for the routine identified in the IR.

52. SIGNAL.READY;

53. JUMP to Mapping.RAM(IR);

98

**Lines 500 and 501 are used to set the DES back into a
**ready state. Processing will not continue until the DES
**has returned to the ready state.

54. SIGNAL-READY;

S5. JUMP to 32;

B.3 Initialize Simulation Microcode

This code is used to load all LP specific information into DES RAM, reserve words in

the CAM for all input arcs, setup the status register for each LP, and output null messages

to all output arcs. This routine has to be executed for each LP in a given simulation.

**Liness 60 and 61 will force the DES to wait for data,
cccheck to see if it is an opcode (Only operands should
**be sent to the DES at this time), and jump to the error
**routine if an operand is read.

60. if not (READ-.LOCAL) then goto 60

- wait for data present, loop if not

61. If OPCODE then goto 175

- should be an operand

ccLines 62 - 66 load the LP..DELAY for the specified LP
ccinto register 23, reaset the read-.local bit of the status
ccregister, decrement and check tne count register, and

99

** jump to line 175 if the count equals zero.
** NOTE: The count should not equal zero because the
** simulation time and arc information has not been read.

62. Input-Data;

- this command will enable data onto the local data bus

63. Reg23 := MBR;

- Load the LP.DELAY into register 23

64. Reg63 :a Reg63 + Reg54;

- decrement count

65. If ZERO then goto 175

- count should not be zero yet; still have to load
SIM-TIME, #-ARCS and the I/O.ARCS

66. Read.Local.Toggle;

** Lines 67 - 73 load the simulation time for the LP
** into register 62, reset the read-local bit of the status
** register, decrement and check the count register, and
** jump to line 175 if the count equals zero.

** NOTE: The count should not equal zero because the arc
** information has not been read.

67. If not (Read.Local) goto 67

68. If OPCODE then goto 175

- should be an operand

69. Input.Data;

- this command will enable data onto the local data bus

100

/" / I . ..-7 . . -

S • ' -. t ,'- • _ .. - - : .- / ' '" " "

70. Reg62 := MBR;

- Load the SIM-TIME into register 62

71. Reg63 :a Reg63 + Reg54;

- decrement count

. 72. If ZERO then goto 175

73. Read.LocalToggle;

** Lines 74 - 80 load the number of I/0 arcs for the LP
•* into register 21, reset the read-local bit of the status
** register, decrement and check the count register, and

j* Jump to line 175 if the count equals zero.
•* NOTE: The count should not equal zero because all of
** the arc information has not been read.

74. If not (READLOCAL/WRITEREMOTE) then goto 74

- wait for data present, loop if not

75. If OPCODE then goto 175

s- hould be an operand

76. Input.Data;

- this command will enable data onto the local data bus

77. Read.Local.Toggle;

78. Reg2l :a MBR;

- Load the #.-ARCS.IN/OUT into register 21

79. Reg63 :- Reg63 + Reg54;

- decrement count

101

80. If ZERO then goto 175

- count should not be zero yet; the I/OARCS

** Lines 81 and 82 load the base pointer for the LP into
** register 31 for use when loading the input and output
** arcs into RAM. R2.MUX(ACC, 0) specifies the LP base
CC pointer. The '0' is used for bitS of the R2i4UX to

** point to registers 0 through 19. A '1' would be used
** to specify registers 32 th~rough 51 (status registers).

81. Reg31 :a BAND(Reg3l, Reg52);

- zero register 31

82. Reg3l := BOR(Reg3i, R2.-.UX(ACC, 0));

- Load the base pointer into register 31

** Linesý 83 - 91 are responsible for storing the delay for
** the LP, simulation time, and the number of I/0 arcs into
** the LP's RAM partition.

83. MBR :* Reg23; MAR :x Reg3l;

- start store of the LPDELAY into DES RAM

84. RAM.WRITE;

- causes write to RAM

8S. Reg3l :a Reg3l + Reg53;

- advance RAM ptr

86. MBR :a Reg62; MAR : Reg3l;

102

* --

- start store of the SIN-TIME into DES RAM

87. RAM-WRITE;

- causes write to RAM

.. 88. Reg3l :, Reg3l + Reg53;

- advance RAM ptr

89. MBR :F Peg2l; MAR :a Reg3l;

- start store of the #-ARCS into DES RAM

90. RAM.WRITE;

- causes write to RAM

91. Reg3l := Reg3l + Reg53;

- advance RAM ptr

/7*

/ **

** Lines 92 - 94 sets up register 29 to be used when
** setting up the status register. Register 29 will
** contain the number of I/0 arcs after these instructions.

***,; **

92. Reg29 : BAND(Reg29, Reg52);

S..... - zero register 29

93. Reg29 := BOR(Reg29 , Reg6O);

- prepare register 29 to AND with register 21 to obtain the
"-.•ARCSIN

94. Rea29 := BAND(Reg29, Reg2i);

- register 29 now contains the #.ARCS.IN

*********** *5*5* *5* *5*5* *5*5*5** ***5*5*********1

/.03

-, - -- ...-.• •..._: - :: - . . .

** Lines 95 - 101 sets up the status register for the
** specified LP. The RIIUX(ACC, 1) is used to select the
** the status register instead of the base pointer.
**

95. RI-MUX(ACC, 1) :a B)ND(RIMUX(ACC, 1), Reg52);

- zero STATUS register for specified LP

- the 'I' selects the STATUS register

96. RI.MUX(ACC, 1) :- LSHIFT(RIMUX(ACC, 1) + Reg53);

- preparing STATUS register

97. Reg29 := Reg29 + Reg54;

- decrement ARCSINCOUNTER

98. If ZERO then goto 100

99. JUMP to 96;

100. RI.UX(ACC, 1) :-RSHIFT(R1.MUX(ACC, 1));

101. RI_.UX(ACC, 1) :- BXOR(RI.NUX(ACC, 1), Reg60);

- - Reg 60 000000000000000000000000000000001111111111

Stat Reg. 000000000000000000000000000000000011111111
Result 000000000000000000000000000000001100000000

- the status register is nov ready
- this is an example of an LP wi th 8 input arcs

".- **

** Lines 102 - 104 load the number of input arcs into
** register 29 for input arc loading.

102. Reg29 := BAND(Reg29, RegS2);

- zero register 29 again

104

.-. • • ' " J . " . . • • • ., • F • .• .- .- . . -/ . . s-- --- • " - • . . ! "

103. Reg29 :- BOR(Reg29, Reg6O);

104. Reg29 : BAND(Reg29, Reg2l);

- register 29 now contains ARCS.IN count

- Lines 105 - 126 compose a loop which loads the input
** arcs into RAM and then reserves a word in CAM for
** future use. The number of input arcs is decremented
** and checked each time to determine when the loop has
** completed. The count is also checked each time.

105. If not (Read.Local) goto 105

106. If OPCODE goto 175

107. Input-.Data;

108. Reg22 := HBR;

109. HBR :a Reg22; MAR :- Reg3I;

110. RAM-WRITE;

111. Read.LocalToggle;

112. Reg24 :- BAND(Reg24, Reg52);

113. Reg24 :a BGR(Reg24, Reg55);

114. Reg24 :u BAND(Reg24, Reg22);

- store FROM.NODE/LP in register 24

115. Reg26 :a BAND(Reg26, Reg52);

116. Reg26 :a BOR(Reg26, Reg59);

117. Reg26 :- BAND(Reg26, Reg27);

105

-, _ ____-_- __.__ -_ I. ' . . , " ; *: ..

- store TO.NODE/LP in register 26
/

118. Reg26 :- LSHIFT8(BOR(Reg26, Reg24));

119. MBR := Reg26;

120. CAM.RESERVEARC;

121. Reg3l :* Reg3l + Reg53;

122. Reg29 :J Reg29 + RegS4;

123. If ZERO then goto 127

124. Reg63 : Reg63 + Reg54;

125. If ZERO goto 175

126. JUMP to 105;

127. Reg63 := Reg63 + RegS4;

128. If ZERO then goto 175

** Lines 129 - 144 compose a loop which loads the output
* arcs into RAM. The count is checked each time to
** determine when the loop is completed. Register 29 is
** loaded again using register 21 and right shifted 16

t* times to obtain the number of output arcs which is
** located in the leftmost 16 bits of the word. After

t** he first time through the loop the return address is
** 133 because the number of output arcs does not need to
C be recomputed.

"129. Reg29 :- BAND(Reg29, RegS2);

- zero register 29 to use for count r for OUTPUT arcs

130. Reg29 :* RSHIFT8(BOR(Reg29, Reg2l));

131. Reg29 : RSHIFT8(Reg29);

106

-- \O6

132. Reg25 := BOR(Reg25, Reg29);

133. If not (ReadLocal) goto 133

134. If OPCODE goto 175

135. Input.Data;

- this command will enable data onto the local data bus

136. Reg22 - HBR;

137. BER := Reg22; MAR :- Reg3l;

138. U.M.,WRI"E;

139. MAR :a Reg31;

140. Reg29 :" Reg29 + Reg54;

141. If ZERO then goto 175
V

142. Reg63 := Reg63 + Reg54;

143. If ZERO then goto 175

144. JUMP to 133;

** Lines 145 - 155 compose a set of commands that are used
** to setup the registers and the RAM base pointer for use
** when formatting and transferring null messages to start

"** the simulation.

145. Reg3l := BAND(Reg31, Reg52);

146. Reg31 := BOR(Reg31, R2.-MUX(ACC, 0));

- reset the base pointer to start of partition

147. Reg3l :* Reg31 + RegS3;

107

148. Reg29 :w BAND(Reg29, Reg52);

149. Reg3l :a Reg31 + Reg53;

150. Reg29 := BOR(Reg29, Reg6O);

151. Reg29 :n BAND(Reg29, Reg2l);

152. Reg27 :- RSHIFT8(Reg27);

153. Reg3l :- Reg3l + Reg53;

154. Reg3l : Reg3l + Reg29;

(. - advance pointer to start of ARCS-OUT

155. Reg23 :- Reg23 + Reg62;

- register 23 now contains the TIME.TAG

**

** Lines 156 - 174 are used to complete data packet
** formatting and sending the null messages to the node
** processor. Line 161 inserts a '1' in the lowest order
** bit -;o specify that there will be one operand following
** the original data packet. The infoization following

w** ill be the time tag for the message.

156. MAR :- Reg3l;

157. RAM.READ;

158. Reg24 := MBR;

159. Reg24 := LSHIFT8(Rog24);

- this command shifts the OUTPUT.NODE/LP into the
TO.NODE/LP field for the POST EVENT message

160. Reg24 :a BOR(Reg24, Reg27);

108

| I I . . I I I I

161. Reg24 := BOR(Reg24, Reg53);

162. If not (Write-Local) then goto 162

163. MBR := Reg24;

- .11 l's => POST EVENT Interrupt

164. Output.Data;

165. MBR :a Reg6O;

166. SIGNAL.INTERRUPT;

167. If not (Write.Local) goto 167

168. MBR := Reg23;

169. Output.Data;

- place data in the PARIO device

170. WriteLocal.Toggle;

171. Reg3l :a Reg31 + Reg53;

172. Reg29 :- Reg29 + RegS4;

173. If ZERO goto 500

174. JUMP to 156;

** Lines 175 - 181 compose an error routine called whenever
** an opcode is read. Only operands should be read during
** the initialize simulation routine. The error vector for

tc this error is 1111111111.

175. If not (Write.Local) goto 175

176. HBR := Reg6O;

109

177. Output.Data;

178. WriteLocalToggle;

479. SIGNAL.ERROR;

180. If not (Write.Local) goto 180

181. JUMP to 54;

B.4 Post Message Microcode

** Lines 198 - 204 are written to wait for data, which is
** the time tag, read it into register 26, toggle the
** read-local bit of the status register, decrement the
** counter, and check to see if count equals zero.
**

198. If not (READ.LOCAL) then goto 198

- wait for data present

199. If OPCODE then goto 260

200. Input.Data;

- this command will enable dAta onto the local data bus

201. ReadLocal.Toggle;

202. Reg26 := MBR;

- Load TIME.TAG into register 26

203. Reg63 :a Reg63 + Reg54;

- decrement count

110

"204. If ZERO goto 268

cc Lines 205 - 209 are written to wait for data, which is
cc the memory pointer, read it into register 30, and toggle

tC the read.local bit of the status register.
cc

205. If not (Read.Local) goto 205

206. If OPCODE goto 260

207. Input.Data;

208. ReadLocal.Toggle;

209. Reg30 :a HER;

- Load the memory pointer into register 30

cc Lines 210 - 217 places the TOLP/NODE information into
cc register 24 as part of the formatting routine to store

tc the word into the CAM.

210. Reg24 :a BAND(Reg24, RegS2);

211. Reg24 := BOR(Reg24, Reg59);

212. Reg24 :a LSHIFT(BAND(Reg24, Reg27));

- TO.info is now located in register 24

213. Reg24 :* LSHIFT(Reg24 * Reg24);

- double left shift

214. Reg24 :- LSHIFT(BAND(Reg24. Reg59));

- removes the TO.NODE field from the register

S~111

I.\.

-

215. Reg24 := LSHIFT(Reg24 + Reg24);

- double left shift

216. Reg22 := BAND(Reg22, Reg52);

- double left shift
- register 24 nov has the TO.LP field properly located

217. Reg24 := LSHIFT(Reg24 + Reg24);

** Lines 218 - 222 adds the FROM LP/NODE information and
** time tag into register 24 as part of the formatting
** routine to store the word into the CAM.
**

218. Reg22 := BOR(Reg22, Reg55);

- register 22 now contains the FROM field

, - it must be left shifted

219. Reg22 := BAND(Reg22, RegS7);

220. Reg22 :a LSHIFT8(Reg22);

221. Reg24 := BOR(Reg24, Reg22);

222. Reg24 :- BOR(Reg24, Reg26);

\ **

\c Lines 223 - 226 writes the event to the CAM. The DES
.* does not continue processing until the CAM has signalled
** back to the DES that the CAM is not full. The CAM-MATCH
** flag is used to determine if the CAN is full. A jump to
** address 270 means the CAM is full.
**

223. MBR := Reg24;

112

X7

//

224. CAN.WRITEWORD;

225. If not (C&I..COMPLETE) goto 225

226. If not (CAM-COMPLETE) goto 270

227. Reg31 :* BAND(Reg3l, Reg52);

228. Reg3l :B BOR(Reg31, R2..,MUX(ACC, 0));

- stores the base pointer for RAM in register 31

229. Reg31 :a Reg31 + Reg53;

•* Lines 230 and 231 writes the memory pointer to the
** adjacent RAN.
**

230. HER : Reg30;

231. ADIRAM.WRITE;

** Lines 232 - 242 are responsible for preparing for
** status register updating. The base pointer has to be
** advanced to the first input arc and the number of arcs
. has to be retrieved for arc reading.

,/
S...., /232. Reg31 :a, Reg31 + Reg53;

233. MAR :, Reg3l;

234. RAM.-READ;

23S. Reg3O := HER;

- read number of input arcs into register 30

"236. Reg3l :a Reg3l + Reg53;

113

., . ;, . >
' -," .. '.7, - t ," •' - .. '.'

., . . , ,.: . / - " ," ' ;" -" " ; " " • i.,-1

.;- .'. - --/ "_.-•--. / V

IV

237. Reg20 :- BAND(Reg20, Reg52);

238. Reg20 : BOR(Reg2O, Reg53);

239. Rog22 :- BAND(Reg22, RegS2);

240. Reg22 :- BOR(Reg22, Reg55);

241. Reg30 :n BAND(Reg30, Reg60);

- this command loads the FROM field into register 22 for
comparison to the RAM input arcs

242. Reg22 := BAND(Reg22, RegS7);

/ 2 **

** Lines 243 - 252 compose a loop which determines which
** arc a message has been received on and sets up a bit
** pattern to be used when updating the status register.
** Lines 253 and 254 performs the updating of the status
** register. A simple OR instruction is used to set the
** appropriate bit to a 1.

243. MAR : Reg31;

244. RAM-READ;

"245. Reg2S :" MBR;

246. ALU :" BXOR(Reg25, Reg22);

247. If ZERO then goto 253

248. Reg3 :- Reg3l + Reg53;

249. Reg20 : LSHIFT(Reg2O);

250. Reg30 :a Reg30 + Reg54;

251. If ZERO then goto 276

114

., +" - T '. , / ' - " " -. '

• ~4

252. JUMP to 243;

253. RIMUX(ACC, 1) := BOR(RIHUX(ACC, 1), Reg20);

254. JUMP to 500;

**

** Lines 260 - 266 compose the routine which specifies an
-- error has occurrwd. The error message sent to the host
, processor signifies that an opcode %as received when an
** operand was expected.

260. If not (Write-Local) goto 260

261. MBR :- Reg60;

262. Output_.Data;

263. Write.Local.Toggle;

264. Signal.Error;

265. If not (Write.Local) goto 265

266. JUMP to 500;

-!.¥ /.**

** Lines 268 and 269 are used to load a null message into
** register 30. These two lines of code are called from

w* whenever a message is received an no memory pointer is
** specified.

268. Reg30 := BAND(Reg30, RegS2);

269. JUMP to 210;

cc Lines 270 - 276 compose an error routine which is called

115

/ .47\

-.-

**whenever the CAM is full. The error vector *00000001.

270. If not (Write-Local) goto 270

271. MER :a Reg53;

272. Output-.Data;

273. Write-.Local..Toggle;

274. SIGNAL-.ERROR;

275. If not (Write-.Local) goto 275

276. JUMP to 54;

**Lines 277 -287 compose an error routine which is called
**whenever there are no matching arcs for the destinttion

** LP. The error vector -11111111.

277. Reg3O : •eAND(Reg3, Reg52);

278. ReS30 BOR(Reg3O, Reg6u);

279. Reg3o RSHIFT(Reg3O);

280. Reg3N RSHIFT(Reg3O);

281. If not (Write.Local) goto 281

282. MR := Reg30o;

283. Output-.Data;

284. Write7-Local.Toggle;

285. Signal-Error;

286. If not (Write0Local) goto 286

116

I.. 8.I o Wrtoa)g~ 8

287. JUMP to 500;

1B.5 Get Event Microcode

/, Lines 349 - 352 checks to see if an event is ready for

** the specified LP.

349. Reg22 :B BAND(Reg22, Reg52);

350. Reg22 :* BOR(Reg22, R2-YUX(ACC, 1));

s- tore STATUS register for specified LP in register 22

351. ALU := BXOR(Reg22, Reg60);

352. If ZERC then goto 362

** Lines 353 - 361 compose an error routine which signals
** the host processor that an event is not ready.

353. Reg22 :- BAND(Reg22, Reg52);

354. Reg22 := RSHIFT(BOR(Reg22, Reg60));

355. Reg22 :a RSHIFT(Reg22);

356. MBR := Reg22;

357. Output-.Data;

358. SIGNAL.ERROR;

117

359. WrizeLocal.Toggle;

"360. If not (Write-Local) goto 360

361. JUMP to 54;

** Lines 362 - 364 are used to format a 32-bit message to
CC be used by the CAM's front end driver to locate the
** event with the smallest time tag for the appropriate LP.

362. Reg24 :a BAND(Reg24, Reg52);

363. Reg24 :- BOR(Reg24, Reg27);

364. Reg24 := LSHIFT8(Reg24);

.:*

-. Lines 365 - 368 commands the CAM to perform a search for
** the minimum time tag for the specified LP. The DES will
** wait until the CAM has returned control to the DES.

CCCC *** ** CC***** * *** ***C****CeCC********** *C***** * * *C*C **C** **

* •365. MBR :a Reg24;

366. CAM.MINFINDAND.READ;

367. If not (CAM.COMPLETE) goto 367

368. If not (CAN.MATCH) goto 486

C**C****C**** ****C**C*C CCC CC C C **CC CC ***C C************** CC C

C* Lines 369 - 372 performs a read of the event from the
** cam and a read of the memory pointer from the adjacent
Ce RAM. The event is stored in register 29 and the memory
e, pointer is stored in register 30.

118

* -* - *. r, , , '

-- I

S/ 369. CAM-.READ;

S- 370. Reg29 :- MBR;

s- tore EVENT in register 29

7/ 371. ADJ..RAMREAD;

F-.- read adjacent RAM

372. Reg30 := MBR;

- store MEMPTR in register 30

** Lines 373 - 387 performs an update of the simulation
** time for the specified LP. The delay for the LP is
** stored in register 25 to be used to determine the time
** tag for the output event.

i,**

373. Reg2i :a BAND(Reg2l, Reg52);

374. Reg21 :a BOR(Reg2i, Reg29);

,.> -- * 375. Reg3l := BAND(Reg3l, Reg52);

376. Reg3l :- BOR(Reg3i, R2MtUX(ACC, 0));

1 -- store base pointer in register 31

377. MAR :w Reg3l;

378. RAN-READ;

- 379. Reg23 :a MBR;

- store LPDELAY into register 23

S380. Reg3l := Reg3l + Reo5 3;

- advance pointer

"119

.I -------,- -',

<7'/ 381. Reg25 :* BAND(Reg25, Rag52);

:/ -

382. Reg25 :w BOR(Reg2S, Reg6O);

383. Reg2S :u BOR(Reg2S, Reg55);

384. Reg25 :- RSHIFT(Reg25);

"- register 25 now contains the TIME.TAG

385. Reg25 : BAND(Reg25, Reg29);

386. MBR :a Reg3l; MAR :R Reg25;

387. RA•P WRITE;

** Lines 388 - 405 composes a series of comm mds that
e* partially formats the output event, obtains the number
** of arcs for status updating, and searches for another

, , ** event on the same arc. If another event is in the CAM,
." ** then the status register doos not need to be changed.

. •:I•L•********* ~***

U38. Reg25 := Reg2S + Reg23;

- register 25 now contains the message time including delay

389. Reg3l :* Reg31 + Reg53;

390. MAR := Reg3l;

391. RA-..READ;

; 1 392. Reg28 :a MDR;

393. Reg31 :- Reg31 + RegS3;

394. Reg23 :u BAND(Reg23, Reg52);

395. Reg23 :* BOR(Reg23, Reg28);

396. Reg28 :- BAND(Reg28, Reg6O);

120

"""/-44.
.: ,, . . . •/ : ,.¶ . .- , •. ,•

397. Reg21 := RSHIFT8(Reg21);

398. Reg21 :a BAND(Reg2l, RegSS);

399. Reg23 :a RSHIFT8(Reg23);

400. Reg23 :- BAND(Reg23, Reg6O);

401. Reg23 :a RSHIFT8(Reg23);

402. MBR :a Reg29;

403. CAMSEARCH.TOLP.FROM;

"404. If not (CAM.COMPLETE) goto 404

405. If CAM-MATCH goto 420

* /

cc Lines 406 - 420 composes a loop which updates the otatus
** register for the specified LP and then checks to see if

tc the memory pointer is a null message. All O's signifies
/c a null message. If the message is null, then a null is

s** ent to all output arcs and another event is retrieved
cc if it ia ready.

406. Reg20 : BAND(Reg20, RegS2);

'-07. Reg20 :* BOR(Reg2O, Reg53);

408. MAR := Reg31;

409. RAM-READ;

410. Reg26 := MBR;

,411. ALU := BXOR(Reg26, Reg21);

412. If ZERO goto 419

413. Reg3l :a Reg31 + RegS3;

121

. 7 .. . / . " .- / • . . ,• • . , , , , ,. , •

/

414. Reg20 :u LSHIFT(Reg20);

415. Reg28 := Reg28 + RegF-i;

416. If ZERO goto 486

417. JMP to 408;

419. R1.MUX(ACC, 1) :- BYOR(R1.MUX(ACC, 1), Reg2O);

420. ALU :a Reg30;

421. If ZERO goto 450

** Lines 422 - 448 composes a aeries of instructions which
e, transmits the event, time tag, a!d memory pointer to the
0* hosts node for processing. This code is only executed

w. when the event is not a null message. Register 20
*0 contains the event, register 22 contains the interrupt

S - *0 vector, register 25 contains the time tag, and register
0* 30 contains the memory pointer.

422. Reg20 :- BAND(Reg20, RegS2);

* •423. Reg20 :* BOR(Reg2O, RegSS);

424. Reg20 :* BAND(Reg20, Reg2i);

425. Re%28 :B PD(Reg28, RegS2);

426. Reg28 :n SOR(Reg28, Reg27);

427. Reg28 :* DND 'Reg28, Reg59);

428. Reg20 :- BOR(Reg2O, Reg28);

429. Reg20 :R Reg20 + RegS3;

430. If not (WRITE.LOCAL) goto 430

122

/1 *

431. Reg20 := Reg20 + RegS3;

432. MRR :u Reg20;

433. Output.Data;

434. Reg22 :a BAND(Rog22, Reg52);

435. Reg22 :- BOR(Reg22, R~g60);

436. Reg22 :a LSHIFT(Reg22);

437. MBR :a Reg22;

438. Signal-Interrupt;

439. If not (WRITE-LOCAL) goto 439

440. MBR := Reg25;

441. Output.Data;

442. Write..Local-.Toggle;

443. If not (WRITELOCAL_ goto 443

444. MBR := Reg30;

445. Output-Data;

446. WriteLocal.Toggle;

447. In not (WRITE-LOCAL) goto 447

448. JUMP to 64;
'L*

** Lines 450 - 486 composes a loop which sends a null
** message to every output arc because a null message was
** retrieved. Register 20 contains the formatted event,
*R register 60 contains the interrupt vector (11111111),
** and register 25 contains the time tag.

123

5 : 'I / "/ I

450. Rog31 : BAND(Reg3l, RegS2);

451. Reg3l :BOR(Reg3l, R2..MUX(ACC, 0));

452. Reg3l :a Reg31 + R'agS3;

453. Reg23 := BAND(Reg23, RegS2);

454. Reg3l :m Reg31 + Reg53;

455. MAR :*Re83l;

456. RAM-.READ;

457. Reg28 := HER;

458. Reg23 :a BOR(Reg23, Reg28);

459. Reg28 :B AND(Reg28, Reg6O);

460. Reg23 :*RSHIF"7v8(Reg23);

461. Reg3i : Reg3l + Reg28;

462. Reg3l :a Reg3i + Reg53;

463. Reg23 := RSHIFT8(Reg23);

464. Reg23 :a BAND (Reg23, Reg60);

465. MAR := Reg3l;

466. RAM-.READ;

467. Reg20 := HER;

468. Reg20 :a LSI{IFT8(Reg20);

469. Reg30 :w BAND(RegO, Reg52);

470. Reg3O : BOR(Reg3O, Reg27);

471. Reg30 :*RSHIFT8(Reg3O);

124

472. Reg2n := BOR(Reg20, Reg30);

473. Reg20 := Reg20 + Reg53;

474. If not (WRITE-LOCAL) goto 474

475. MBR := Reg20;

476. Output.Data;

477. MBR := Reg60;

478. SIGNAL.INTERRUPT;

479. If not (WRITE.LOCAL) then goto 479

480. MBR := Reg25;

481. Output.Data;

482. Write.Local.Toggle;

483. Reg23 := Reg23 + Reg54;

484. If ZERO goto 64

485. Reg3l := Reg3l + Reg53;

486M JUMP to 465;

** Lines 487 - 495 are an error routine which signifies
cc that the DES thought an event was ready, but could not
cc retrieve one from the CAN.

487. Reg20 :a BAND(Reg20, RegS2);

488. Reg20 :a BOR(Reg2O, Reg6O);

489. Reg20 "- RSHIFT8(Reg20);

490. If not (WRITE.LOCAL) goto 490

125

/

491. ER := Reg20;

492. Output-Data;

493. SIGNAL.ERROR;

494. If not (WRITE-LOCAL) goto 494

495. JUMPto 54;

(

B.6 Post Event Microcode

** Line 299 shifts the source NODE/LP information over
** into bits 17 down to 10 as part of message formatting.

'.' i",,**

299. Reg27 :* RSHIFT8(Reg27);

** Lines 300 - 308 are used to wait for data, read the data
** which contains the tine tag, advance the RAM pointer,
** and reset the read-local bit of the status register.

, **

300. If not (Read.Local) goto 300

301. If OPCODE goto 260

302. Reg31 :a BAND(Reg31, RegS2);

303. Reg3l :w BOR(Reg31, R2..MUX(ACC, 0));

304. Reg3l :a Reg3l + Reg53;

305. Input.Data;

126

/

// .
- /, . /

- this command will enable the data onto the local data bus

- read it into the DES

- reset the READ.LOCAL/WRITEREMOTE bit of the status
register

/
306. Reg26 :M HR;

- Load TIE-.TAG into register 26

307. ReadLocal.Toggle;

308. Reg3l :* Reg3l + Reg53;

** Lines 309 - 318 are used to read the number of input
• * and output arcs into register 21, store the arc info
** into register 31, mask off the number of output arcs

** in register 21, advance the RAM pointer to the first

., ** output arc, and right shift register 30 so it only

/* contains the number of output arcs.

309. MAR :a Reg3l;

310. RAN.•READ;

.•/ 311. Reg2l := MBR;

// , 312. Reg30 :- BAND(Reg30, Reg52);

313. Reg30 := BOR(Reg3O, Reg2l);

314. Reg2l :a BAND(Reg21, Reg6O);

- register 21 nov contains the #.ARCS.IN

315. Reg3l :a Reg3l + Reg2l;

- advance RAM ptr to start of Output Arcs

/ ' 316. Reg3l :* Reg3l + RegS3;

127

317. Reg30 := RSHIFT8(Reg3O);

318. Reg30 :, RSHIFT8(Reg3O);

** Lines 319 - 342 compose a loop which is used to retrieve
** output arcs, format the message, and transmit the data
** to the host processor. The arc receiving the real
** message will not be sent a null message. Line 325
** checks to ensure the arc receiving the real message is
** not sent a null message.

319. Reg28 :a BAND(Reg28, RegS2);

320. Reg28 := BOR(Rog28, Reg60);

321. Reg28 :* RSHIFT8(Reg28);

322. MAR :- Reg3l;

323. RAM-.READ;

324. Reg24 : HBR;

325. ALU := BXOR(Reg24, Reg22);

326. If ZERO then goto 339

327. Reg24 :a LSHIFT8(Reg24);

328. Reg57 := BXOR(RegS7, RegS9);

329. RegS7 :a BOR(Reg57, Reg24);

330. If not (WRITE.LOCAL/READ.REMOTE) then goto 330

331. MBR :" Reg57;

332. Output-.Data;

128

• .• • -.** • -/ ,

S• -- - " V"

- I-II-

333. MBR :• Reg28;

- interrupt vector 00000011

334. SIGNAL.INTERRUPT;

335. If not (WRITE.LOCAL/READREMOTE) then goto 335

336. MBR :* Reg26;

- send TIME.TAG out
- an interrupt will not be used
- the CUBE is expecting an operand

337. Output-Data;

338. Write.Local.Toggle;

339. Reg3l :a Reg3l + RegS3;

- advance RAM pointer to the next output arc

340. Reg30 := Reg30 + RegS4;

- decrement the number of output arcs left

341. If ZERO then goto 64

342. JUMP to 322;

129

Appendix C. DES Microcode Instruction Set

Micro Program Instructions

1. Ri : BAND(R1. R.2);
2. Ri : BXOP.(P.1 R2);
3. RI :BOP.(P., R.2);
4. RI RI +14R2;
S. Ri : Ri;
6. ALU :*BAND(R1, R.2);

7. ALU :*BXOP.(P., R2);
8. ALU :a BOP.(Ri, R2);

9. ALU :a Ri + R2;
10. ALU :~RI;
11. Ri BAND(P.1. R2j!UX(ACC, 0));
12. Ri :a BXOP.(R1, P.2-MUX(ACC, 0));
13. Ri : BOP.(R1, P.2.MUX(ACC, 0));
14. RI : Ri + P.2..UX(ACC, 0));
15. Ri : BAND(P.1. P.2..UX(ACC, 1));

16. Ri : BXO.(RP.1 R2..NUX(ACC, 1));
17. Ri BOR(CP.1 R2..MUX(ACC, 1));
18. RI Ri + R2..MUX(ACC, 1));
19. R1..MUX(ACC,i) :B AND(R1...UX(ACC, 1), P.2);
20. RI-M.UX(ACC,I) :BXOP.(P.1..UX(ACC, 1), R.2);
21. R1..NUX(ACC,i) :*BOP.(P.1JUX(ACC, 1), R.2);
22. RI1.MUX(ACC.1) :*R1J!UX(ACC, 1) + R.2);
23. RI-..UX(ACC1I) :~R1...UX(ACC, 1);

24. Ri :a LSHIFTCBAND(R1. R.2));
25. Ri : LSHIFT(BXOP.(P., R.2));
26. Ri : LSHIFT(BOP.(P., R.2));

*27. RI : LSHIFT(P1 + P.2);
28. RI : LSHIFT(P.1);
29. RI : RSHIFT(BAND(P.1, R.2));
30. Ri : RSHIFT(BXOR(R1, P.2));
31. Ri : RSHIFT(BO.(Ri.1 P.2));
32. RI : RSHIFT(P.1);
33. Ri : LSHIFTS(BAND(Ri. P.2));
34. Ri LSHIFT8(BXOP.(P.1 R.2));
35. RI : LSHIFT8(BOP.(P.1 P.2));
36. Ri : LSHIFT8(R1 + P.2);
37. Ri : LSHIFT8(PRi);

130

38. Ri : RSPIFTS(BAND(RI, R2));
39. RI : RSHIFT8CBXOR(RI, R2));
40. Ri : RSHIFTS(BOR(Ri, R2));
41. RI : RSHIFT8(Ri + R2);
42. Ri : RSHIFTS(RI);

43. RI : LSHIFT(BAIW(RI, R2-IUX(ACC, 0)));
44. RI :*LSHIFT(BXOR(Ri, R2-(UX(ACC, 0)));
45. Ri : LSHIFT(BOR(RI, R2..MUI(ACC. 0)));

46. Ri : LSHIFT(R1 + R2..MUX(ACC, 0)));
4V. RI : RSHIFT(BAND(R1, R2..NUX(ACC, 0)));
48. RI : RSHIFT(BXOR(RI, R2..NUX(ACC, 0)));
49. Ri : RSHIFT(BOR(Ri, R2-MUXCACC, 0)));
50. Ri : RSHIFT(Ri + R2-N.UX(ACC, 0));
51. RI : LSHIFT8(BAND(R1, R2..NUX(ACC, 0)));
52. RI :*LSHIFT8(BXOR(RI, R2..NUX(ACC, 0)));
53. Ri : LSHIFT8(BOR(RI, R2..HUX(ACC, 0)));
54. RI : LSHIFT8(Rl + R2..NUX(ACC, 0));
55. Ri : RSHIFT8(BAND(R1, R2..MUX(ACC, 0)));
66. Ri : RSHIFT8(BXOR(RI, R2..NUX(ACC, 0)));
57. Ri : RSHIFT8(BOR(R1, R2.i4UX(ACC, 0)));
58. RI : RSHIFT8(Ri + R2..MUX(ACC, 0)));

59. Ri : LSHIFT(BAND(R1, R2..NUX(ACC, M));
60. Ri LSHIFT(BXOR(Ri, R2.NUX(ACC,))
61. Ri : LSHIFT(BOR(Ri, R2..MUX(ACC,1);
62. RI : LSHIFT(RI + R2..NUX(ACC, 1)));
63. Ri : RSHIFT(BAND(Ri, R2..HUXCACC, M));
64. RI : RSHIFT(BXOR(RI, R2..MUX(ACC, 1)));
65. Ri : RSHIFT(BOR(Ri, R2_M...(ACC, 1)));
66. RI : RSHIFT(Ri + R2..NUX(ACC, 1)));

A67. Ri : LSHIFT8(BAND(R1, R2..MUX(ACC, 1)));
68. Ri : LSHIFT8(BXOR(Rl, R2..NUX(ACC, 1)));
69. Ri : LSHIFT8(BOR(RI, R2..MUX(ACC. M));
70. Ri : LSHIFT8CRI + R2-..UXCACC, 1)));
71. Ri RSHIFT8(BAND(Rl, R2..NUX(ACC, M));
72. RIa RSHIFT8(BXOR(Ri, R2..MUX(ACC, 1));
73. Ri RSHIFT8(BOR(RI, R2-IUX(ACC, M));
74. Ri : RSHIFT8CRI * R2-IUI(ACC, 1)));

75. Rl-.MUX(ACC,i) :a LSHIFTCBAND(R1..NUX(ACC, I)# R2));
76. Ri.JIUX(ACCI) :*LSHIFT(BXDR(R1..NUX(ACC, 1)p R2));
77. Ri...UX(ACC,i) :*LSRIFT(BOR(RI-NUX(ACC, 1), R2));
78. Rl-MUX(ACC.1) :*LSHIFTCRI-NUX(ACC, 1) +*2)
79. R1..MUX(ACC.1) :*LSHIFT(R1.J4UX(ACC, 1));

131

80. R1..MUX(ACC.1) :=RSHIFT(BAND(R1..MUX(ACC, 1), R2));
81. R1..MU`X(ACC,1) :*RSHIFT(BXOR(R1I-UX(ACC, 1), R2));
82. Rl-MUX(ACC,1) :RSHIFT(BOR(R1..MUX(ACC, 1), R2));
83. R1..MUX(ACC,1) :*RSHIFT(RI..MUX(ACC, 1) + R2));
84. R1..MUX(ACC.1) r. SHIFT(RI..MUX(ACC, 1)
85. R1..MUX(ACC,1) :*LSHIFT8(BAND(R1..MUX(ACC. 1). R2));
86. RLMHUX(ACC,1) :uLSHIFT8(BXOR(RI..MUX(ACC, 1). R2));
87. R1..MUXCACC,1) :a LSHIFTS(BOR(R1J4UX(ACC, 1), R2));
88. R1..MUX(ACC,1) :*LSHIFT8(R1..MUX(ACC, 1) + R2));
89. R1..MUX(ACC,1) :*LSHIFT8(R1..MUX(ACC, W);

90. R1..MUX(ACC,1) :*RSHIFT8(BAND(R1.YUX(ACC, 1), R2));
91. Ri..MUX(ACC,1) :~RSHIFT8(BXOR(R1..MUX(ACC, 1), R2));
92. RL-MUX(ACC.1) :RSHIFT8(BOR(R1..MUX(ACC, 1), R2));

93. R1..MUX(ACC,1) :RSHIFT8(R1..MUX(ACC, 1) R 2));

94. R1..MUX(ACC,1) :RSHIFT8(R1..MUX(ACC, 1);

95. MAR R* 2; HER : 3;
96. Ri :* HR;
97. HER :*Ri;

98. SIGNAL-INTR(DATA);
120. MAR :a R2;

STATUS COMMANDS

99. SIGNAL-.READY;
100. SIGNAL-.ERROR;
101. READ..LOCAL/WRITE..REMOTE;
102. WRITE..LOCAL/READ..REMOTE;

MSL CHECKS

103. IF OPCODE THEN GOTO R1/R2
104. IF NOT (OPCODE and READ 4 LOCAL/WRITE..REMOTE) THEN GOTO 31/32
105. IF ZERO THEN GOTO Rl/R,
106. IF NOT (READ..LOCAL/UaITE REMOTE) THEN GOTO R1IR2
107. IF NOT (WRITE..LOCAL/READ..REMOTE) THEN GOT 31/32
108. IF CAM-.MATCH THEN GOT R1/R2
109. IF MIN-.COMPLETE THEN GOT6 R1/R2
110. JUMP TO R1/R2
111. JUMP TO IR(MAPPING..ROM)
131. IF NOT (CAM-MATCH) THEN G TO Rl/R2
132. IF NOT (CAM-COMPLETE) THEN) GOTO R1/R2

RAM INSTRUCTIONS

132

112. RAM-.WRITE(1);
113. RAM-.WRITEC2);
114. RALWRITE(3);

115. RAN-.WRITE(4);
116. RAH..READC1);

117. RAM..READ(2);
118. RAI4.RE.AD(3);
119. RAM..READ(4);

Content-Addressable Memory Instructions

121. CAM-.INIT;
122. CAM-M.IN..FIND..AND-.READ;
123. CAN..SEARCH..TOLP..FROM
124. CAM..WRITE..WORD
125. CAN..RESER yE-.ARC

126. CAM-.READ;
127. ADJ,.RAM..WRITE;
128. ADJ..RAN..READ;

DATA TRANSFER WITH CUBE

129. INPUT-.DATA;
130. OUTPUT-.DATA;

133

V.. , . ,

./ Appendix D. DES VHDL Behavioral and Structural Code

This appendix contains the a complete behavioral VHDL listing of all the files used

in the DES coprocessor. All of the VHDL files were written using Syncpsys VHDL. A

partial struct-aral listing is also included, but all of the components in the I. ES are not at

the structural level. The source code is listed in volume 2 of this research effort. A copy of

volume 2 can be requested through the VLSI Lab, Department of Electrical and Computer

Engineering within the School of Engineering.

/1

134

..._ .. .

/'7'

"References

1. Banton, David W., PhD Candidate, "Personal Conversation," July-August 1992.

2. Brothers, Charles P., PhD Candidate, "Personal Conversation," July-August 1992.

* 3. Catlin, Gary and Bill Paseman. "Hardware Acceleration of Logic Simulation Using a
Data Flow Architecture." International Conference on Computer-Aided Design. 130-
132. Washington D.C.: IEEE, 1985.

4. Chandy, K. M. and J. Misra. "Asynchronous Distributed Simulation via a Sequence
of Parallel Computations," Communications of the ACM, 24:198-206 (April 1981).

5. d'Abreu, Manuel A. "Gate-Level Simulation," IEEE Design and Test, 2:63-71 (De-
; /,*' / cember 1985).

6. Franklin, M. A. and other-, "Parallel Machines and Algorithms for Discrete-Event
Simulation." International Conference on Parallel Processing. 449-458. Columbus,
Oh.: IEEE, 1984.

7. Fujimoto, Richard M. and others. "The Roll Back Chip: Hardware Support for Dis-
tributed Simulation Using Time Warp," Distributed Simulation, 19:81-86 (February
1988).

8. Georing, Richard. "Simulation accelerators address throughput issues," Computer
Design, 42-47 (March 1988).

9. Intel Corporation, Mt. Prospect, IL. Microprocessors, Volume 11, 1991.

10. Jefferson, David. "Virtual Time," ACM Transactions on Programming Languages
and Systems, 7:404-425 (July 1985).

11. Kesting, Loren F. Final Report: A User's Manual for OCTTOOLS. The Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH. EENG699.

12. Lee, Ann Kathryn. An Empirical Study of Combining Communicating Processes in a
Parallel Discrete Event Simulation. MS thesis, AFIT/GCS/ENG/90D-08, Air Force
Institue of Technology (AU), Wright-Patterson AFB, OH, December 1990.

13. Misra, Jayadev. "Distributed Discrete-Event Simulation," ACM Computering Sur-
.veys, 18:39-65 (March 1986).

14. Neelamkavil, Francis. Computer Simulation and Modelling. John Wiley and Sons,
1987.

15. Nicol, David M. and Jr. Paul F. Reynolds. "An Efficient Framework for Pt-xallel
Simulations." SCS Multiconference, PADS Workshop. 167-173. 1991.

16. Pritsker, A. Alan B. and Claude D. Pegden. Intr,.duction to Simulation and SLAM.
John Wiley and Sons, 1984.

17. Reed, Daniel A. and Allen D. Malony. "Parallel Dis:rete Event Simulation: The
Chandy-Misra Approach." Distributed Simulation. 8-13. La Jolla CA: SCS, 1988.

18. Synopsys, Inc. Design Compiler Reference Manual, Version 2.2, October 1991.

135

.. " ,- . /\ . -

/1

20. Tanenbaum, Andrew S. Structured Computer Organization, 3rd Edition. Prentice
Hall, 1990.

21. Taylor, Paul J. Requirements Analysis for a Hardware, Discrete-Event, Simulation
Engine Accelerator. MS thesis, AFIT/GCE/ENG/91D-11, Air Force Institute of

/ Technology (AU), Wright-Patterson AFB, OH, December 1991.
22. Van Horn, Prescott J. Development of a Protocol User's Guideline for Conservative

Parallel Simulations. MS thesis, AFIT/GCS/ENG/92D-19, School of Engineering,
1~ Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1992.

23. Wieland, Frederick and others. "Speedup Bias." Unpublished Paper.

'13
/, 'I.19 1

/ /

; •. ;-,--20 .TaebuAde S. StutrdCmue Inztin r dto.Pet
• ' ..Hall.1990

. ; ./, i

/// Vita

Captain David W. Daniel was born on 24 July 1963 at Barksdale AFB, Louisiana.

He graduated from Warrensburg High School in 1981. He then received his undergraduate

computer science degree from Central Missouri State University in 1985. He received

his Air Force commission on 2 October 1986 and served four and a half years in the

* 'ICommunication s- Computer Systems Directorate at the Air Force Institute of Technology

(AFIT). He then entered the AFIT in-residence program to receive his masters in computer

engineering.

Permanent address: 2805 Arden Ave
Dayton, Ohio 45420

137

ForM Aprov/

REPORT DOCUMENTATION PAGE 0MB No. 0704-.0188

05 r - ,a 'C' -f "t~cdC~a.0 s et,II&I"e 'C 4i.e'age 1 0I b 'esp3'le mfcti.01ý the time for r.eoewig instructionsw rhrg .sdaasucs
- ~~~~;Ative'r'I. 3" a!..c t'e data m Oeee ama ccrnoeting and~ re~f m ire .soIedvon of inf-matio,, Senao commemis regae trb.drst ae0'n ,'r*OC1 ftPr

cc r'-at'om mc(.idlrý sugge~t-cm ,¶ 'ý , Ie blqthsofroe to Washintgton ie~caanrefs Services. Di-reciorate a, informati.on operatonrs and R,00"%,1. 215 Jet~elio.
0'a. s ffqýa, S-tfi 1224 4--gtof. -.a 22232-4302 and toPIP Offie OrMnqema we"1 and Budge, Paperwork Reduto I~P~o~ed(0704-01S8) WoonJ'I~tor DC 20503

1. AGENCY USE ONLY (Leave biank) 2. RLR01 ATE99 3. REM~Jfh DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
DESIGN OF A HARDWARE DISCRETE EVENT
SIMULATION COPROCESSOR

6. AUTHORS1
DavidRAVIDaniel

7. PERFORMING ORGANIZA TION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
Air Force Institute of Technology, WPAFB OH 45433-6583 RE UMBE8R

9 SPONwSORtNC MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
DARPA (LTC John Toole) AGENCY REPORT NUMBER

3701 N. Fairfax Dr.
Arlington, VA 22203

1.SUPPLEMENTARY NOTES

12a. DWSRt5BjTiON AVAIL.ABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unjimited

13. ABSTRACT (Maximumr' 200 words)
A hardware discrete event simulation (DES) coprocessor was designed to eliminate synchronization overhead
as a possible bottleneck. The target architecture is an eight node Intel IIPSC/2 Hypercube, but this design
has application to future CPU designs that wish to incorporate on-chip architectural features to better support
parallel processor synchronization. A structural description of a general-purpose DES hardware coprocessor is
given with approximately 90 percent of the components written at the gate level. The remaining components use
low-level behavioral descriptions. While the DES coprocessor microcode implemerts the Chandy-Misra protocol,
general-purpose support for a wide-range of protocols was a primary hardware design objective.

14. SUBJECT TERMIS 15. NUJR~RO AE
Simulation, Parallel Processing, Discrete Event Simulation, VHDL, Coprc cessor, 'ORO AE

Simulation Accelerator 16. PRICE CODE

17. SECURITY CLASSIFI CATION 18. SECURITY CLASSIFICATION MI S 19 SURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT'
OF REPORT I OF THIS PAGE O cF ABSTRACT U

UNCLASSIFIED I UNCLASSIFIED I UNCLASSIFIED U
NSN 7540-01280-5500 Stan~dard Form 298 (Rev 2-89)

PIrliv-Ded Ist ANS., SIC 139'$

